DOI QR코드

DOI QR Code

Optimum Compositions for Piezoelectric Properties of Pb-free (Bi0.5Na0.5)(1-x)BaxTiO3 Ceramics

비납계 (Bi0.5Na0.5)(1-x)BaxTiO3 압전 세라믹 재료의 최적 조성

  • Sung, Yeon-Soo (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Yeo, Hong-Goo (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Cho, Jong-Ho (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Song, Tae-Kwon (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Jeong, Soon-Jong (Korea Electrotechnology Research Institute, Electric and Magnetic Devices Research Group) ;
  • Song, Jae-Sung (Korea Electrotechnology Research Institute, Electric and Magnetic Devices Research Group) ;
  • Kim, Myong-Ho (School of Nano & Advanced Materials Engineering, Changwon National University)
  • 성연수 (창원대학교 나노신소재 공학부) ;
  • 여홍구 (창원대학교 나노신소재 공학부) ;
  • 조종호 (창원대학교 나노신소재 공학부) ;
  • 송태권 (창원대학교 나노신소재 공학부) ;
  • 정순종 (한국전기연구원 전자기소자그룹) ;
  • 송재성 (한국전기연구원 전자기소자그룹) ;
  • 김명호 (창원대학교 나노신소재 공학부)
  • Published : 2007.02.27

Abstract

Optimum compositions for piezoelectric properties of $(Bi_{0.5}Na_{0.5})_{(1-x)}Ba_xTiO_3$ ceramics were investigated in the range of $x=0{\sim}0.1$ covering rhombohedral to tetragonal phase regions. No impurity phases other than a perovskite phase were found and the grain size decreased with increasing x. A two-phase coexisting morphotropic phase area rather than boundary dividing rhombohedral and tetragonal phase regions appeared to exist at $x=0.05{\sim}0.08$. As for piezoelectric properties within morphotropic phase compositions, the piezoelectric constant ($d_{33}$) and the electromechanical coupling factor ($K_p$) showed peak values at x=0.065, 192 pC/N and 34%, respectively, indicating x=0.065 as an optimum composition for piezoelectric $(Bi_{0.5}Na_{0.5})_{(1-x)}Ba_xTiO_3$ ceramics.

Keywords

References

  1. S. E. Park and S. J. Chung, J. Am. Ceram. Soc., 79, 1290 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08586.x
  2. J. A. Zvirgzds, P. P. Kapostins and J. V. Zvirgzde, Ferroelectrics, 40, 75 (1982) https://doi.org/10.1080/00150198208210600
  3. I. P. Pronin, N. N. Parfenova, N. V. Zaitseva, V. A. Isupov and G. A. Smolenskii, Sov. Phys. Solid State, 24, 1060 (1982)
  4. I. P. Pronin, P. P. Symikov, V. A. Isupov, V. M. Egorov, N. V. Zaitseva and A. F. Ioffe, Ferroelectrics, 25, 395 (1980) https://doi.org/10.1080/00150198008207029
  5. B. Jaffe, W. R. Cook, Jr. and H. Jaffe, Piezoelectric Ceramics (Academic, New York, 1971)
  6. Y. Hiruma, R. Aoyagi, H. Nagata and T. Takenaka, Jpn. J. Appl. Phys., 44, 5040 (2005) https://doi.org/10.1143/JJAP.44.5040
  7. M. H. Kuk, M. H. Kim, J. A. Cho, Y. S. Sung, T. K. Song, D. S. Bae, S. J. Jeong and J. S. Song, Kor. J. Mater. Res., 15, 683 (2005) https://doi.org/10.3740/MRSK.2005.15.11.683
  8. Q. Xu, S. Wu, S. Chen, W. Chen, J. Lee, J. Zhou, H. Sun and Y. Li, Mater. Res. Bull., 40, 373 (2005) https://doi.org/10.1016/j.materresbull.2004.10.004
  9. Q. Xu, S. Chen, W. Chen, S. Wu, J. Lee, J. Zhou, H. Sun and Y. Li, J. Alloys Comp., 381, 221 (2004) https://doi.org/10.1016/j.jallcom.2004.02.057
  10. H. Yilmaz, S. Trolier-Mckinstry and G. L. Messing, J. Electroceramics, 11, 217 (2003) https://doi.org/10.1023/B:JECR.0000026376.48324.21
  11. B. J. Chu, A. R. Chen, G. R. Li and Q. R. Yin, J. Eur. Ceram. Soc., 22, 2115 (2002) https://doi.org/10.1016/S0955-2219(02)00027-4
  12. Y. Chiang, G. W. Farrey and A. N. Soukhojak, Appl. Phys. Lett., 73, 3683 (1998) https://doi.org/10.1063/1.122862
  13. T. Takenaka, K. Maruyama and K. Sakata, Jpn. J. Appl. Phys., 30, 2236 (1991) https://doi.org/10.1143/JJAP.30.2236
  14. J. A. Cho, M. H. Kuk, Y. S. Sung, S. H. Lee, T. K. Song, S. J. Jeong, J. S. Song and M. H. Kim, Kor. J. Mater. Res., 15, 639 (2005) https://doi.org/10.3740/MRSK.2005.15.10.639
  15. A. Sasaki, T. Chiba, Y. Mamiya and E. Otsuki, Jpn. J. Appl. Phys., 38, 5564 (1999) https://doi.org/10.1143/JJAP.38.5564
  16. Y. Li, W. Chen, Q. Xu, J. Zhou, X. Gu and S. Fang, Mater. Chem. Phys., 94, 328 (2005) https://doi.org/10.1016/j.matchemphys.2005.05.009
  17. T. Takenaka and H. Nagata, J. Eur. Ceram. Soc., 25, 2693 (2005) https://doi.org/10.1016/j.jeurceramsoc.2005.03.125
  18. H. Nagata, M. Yoshida, Y. Makiuchi and T. Takenaka, Jpn. J. Appl. Phys., 42, 7401 (2003) https://doi.org/10.1143/JJAP.42.7401
  19. X. X. Wang, X. G. Tang and H. L. Chan, Appl. Phys, Lett., 85, 91 (2004) https://doi.org/10.1063/1.1767592
  20. D. Lin, D. Xiao, J. Zhu and P. Yu, Appl. Phys. Lett., 88, 062901 (2006) https://doi.org/10.1063/1.2171799
  21. D. Lin, D. Xiao, J. Zhu and P. Yu, Phys. Stat. Sol. (a), 202, R89 (2005) https://doi.org/10.1002/pssa.200510034