References
- R. Atkinson, 'A Simple Theory of the Johnsen-Rahbek Effect,' Brit. J. Appl. Phys., 2 [3] 325-332 (1969) https://doi.org/10.1088/0022-3727/2/3/303
- T. Watnabe, T. Kitabayashi, and C. Nakayama, 'Electrostatic Force and Absorption Current of Alumina Electrostatic Chuck,' Jpn. J. Appl. Phys., 31 2145-50 (1992) https://doi.org/10.1143/JJAP.31.2145
- T. Watnabe, T. Kitabayashi, and C. Nakayama, 'Relationship Between Electrical Resistivity and Electrostatic Force of Alumina Electrostatic Chuck,' Jpn. J. Appl. Phys., 32 864-871 (1993) https://doi.org/10.1143/JJAP.32.864
- J. van Elp, P. T. M. Giesen, and A. M. M. de Groof, 'Lowthermal Expansion Electrostatic Chuck Materials and Clamp Mechanisms in Vacuun and Air,' Microelectronic Eng., 73- 74 941-47 (2004) https://doi.org/10.1016/S0167-9317(04)00248-5
- G. Kalkowski, S. Risse, G. Harnisch, and V. Guyenot, 'Electrostatic Chucks for Lithography Applications,' Microelectronic Eng., 57-58 219-222 (2001) https://doi.org/10.1016/S0167-9317(01)00519-6
- J. C. Bang, 'Fabrication of Borosilicate Glass-Coated Electrostatic Chucks(in Korean),' J. Microelectronics & Packaging Soc., 9 [1] 49-52 (2002)
- G. Kalkowski, S. Risse, and V. Guyenot, 'Electrostatic Chuck Behavior at Ambient Conditions,' Microelectronic Eng., 61-62 357-61 (2002) https://doi.org/10.1016/S0167-9317(02)00501-4
- G. Kalkowski, S. Risse, S. Muller, and G. Harnisch, 'Electrostatic Chucks for EUV Masks,' Microelectronic Eng., 83 714-17 (2006) https://doi.org/10.1016/j.mee.2006.01.049
- C. M. Whang, W. J. Jeong, and S. W. Choi, 'Synthesis of Aluminum Nitride Powder from Aluminum Hydroxide by Carbothermal Reduction-Nitridation(in Korean),' J. Kor. Ceram. Soc., 31 [8] 893-901 (1994)
-
W. S. Jung, 'Synthesis of Aluminum Nitride Powders and Whiskers from a
$(NH_4)[Al(edta)]{\cdot}2H_2O$ ( Complex under a Flow of Nitrogen(in Korean),' J. Kor. Ceram. Soc., 39 [3] 272-277 (2002) https://doi.org/10.4191/KCERS.2002.39.3.272 - S. K. Yang and J. B. Kang, 'Synthesis of Aluminum Nitride Whisker by Carbothermal Reaction I. Effect of Fluoride Addition(in Korean),' J. Kor. Ceram. Soc., 41 [2] 118-24 (2004) https://doi.org/10.4191/KCERS.2004.41.2.118
- G. A. Slack, 'Nonmetallic Crystals with High Thermal Conductivity,' J. Phy. Chem. Solids, 34 321-35 (1973) https://doi.org/10.1016/0022-3697(73)90092-9
- R. W. Francis and W. L. Worrell, 'High Temperature Electrical Conductivity of Aluminum Nitride,' J. Electrochem. Soc., 123 [3] 430-433 (1976) https://doi.org/10.1149/1.2132844
-
M. Yahagi and K. S. Goto, 'Ionic Conductivity of AlN Containing
$Y_2O_3\;or\;Al_2O_3$ at 1173-1773 K,' J. Jpn. Inst. Metal, 47 [5] 419-425 (1983) https://doi.org/10.2320/jinstmet1952.47.5_419 - M. Zulfequar and A. Kumar, 'Electrical Conductivity and Dielectric Behavior of Hot-Pressed AlN,' Adv. Ceram. Mat., 3 [4] 332-336 (1988) https://doi.org/10.1111/j.1551-2916.1988.tb00229.x
- S. A. Jang and G. M. Choi, 'Electrical Conduction in Aluminum Nitride,' J. Am. Ceram. Soc., 76 [4] 957-60 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb05319.x
- K. Komeya, 'Effect of Various Additives on Sintering of AlN,' Yogyo-Kyokai-Shi, 89 [6] 330-336 (1981) https://doi.org/10.2109/jcersj1950.89.1030_330
- L. Weisenbach, J. A. S. Ikeda, and Y. M. Chiang, 'Distribution of Oxygen and Sintering Aids in AlN with High Thermal Conductivity,' Advances in Ceramics, 26 133 (1987)
- T. Takahashi, N. Iwase, A. Tsuga, and M. Nagata, 'Properties and Reliability of AlN Ceramics for Power Devices,' Advanced in Ceramics, 26 [159] (1987)
- W.-J. Kim, D. K. Kim, and C. H. Kim, 'Morphological Effect of Second Phase on the Thermal Conductivity of AlN Ceramics,' J. Am. Ceram. Soc., 79 [3] 1066-72 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08549.x
- H. Nakano, K. Watari, H. Hayashi, and K. Urabe, 'Microstructural Characterization of High-Thermal-Conductivity Aluminum Nitride Ceramic,' J. Am. Ceram. Soc., 85 [12] 3093-3095 (2002) https://doi.org/10.1111/j.1151-2916.2002.tb00587.x
- J. Jamnik and J. Maier, 'Treatment of the Impedance of Mixed Conductors Equivalent Circuit Model and Explicit Approximate Solutions,' J. Electrochem. Soc., 146 [11] 4183-4188 (1999) https://doi.org/10.1149/1.1392611
- J. Jamnik and J. Maier, 'Generalised Equivalent Circuits for Mass and Charge Transport: Chemical Capacitance and Its Implications,' Phy. Chem. Chem. Phys., 3 1668-1678 (2001) https://doi.org/10.1039/b100180i
- W. Lai and S. M. Haile, 'Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductor: A Case Study of Ceria,' J. Am. Ceram. Soc., 88 [11] 2979-2997 (2005) https://doi.org/10.1111/j.1551-2916.2005.00740.x
- Phase Diagrams for Ceramists, Fig. 2344
Cited by
- Effect of High Energy Ball Milling on Sintering Behavior and Thermal Conductivity of Direct Nitrided AlN Powder vol.48, pp.5, 2011, https://doi.org/10.4191/kcers.2011.48.5.418
- vol.29, pp.12, 2016, https://doi.org/10.4313/JKEM.2016.29.12.791
- Electrical Behavior of Aluminum Nitride Ceramics Sintered with Yttrium Oxide and Titanium Oxide vol.53, pp.6, 2016, https://doi.org/10.4191/kcers.2016.53.6.635
- Insulating Behavior of Sintered AlN Ceramics Prepared by High-Energy Bead Milling of AlN Powder vol.24, pp.6, 2017, https://doi.org/10.4150/KPMI.2017.24.6.444
- High-temperature ionic and electronic resistivity of MgO- and Ta2O5- doped aluminum nitride vol.72, pp.1, 2018, https://doi.org/10.3938/jkps.72.129