DOI QR코드

DOI QR Code

Effects of Sintering Conditions on the Electrical Conductivity of 1 wt% Y2O3-Doped AlN Ceramics

1 wt% Y2O3 첨가계 AlN 세라믹스의 소결 조건에 따른 전기전도도

  • Lee, Won-Jin (Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Sung-Min (Korea Institute of Ceramic Engineering and Technology) ;
  • Shim, Kwang-Bo (Department of Materials Science and Engineering, Hanyang University) ;
  • Kim, Hyung-Tae (Korea Institute of Ceramic Engineering and Technology)
  • 이원진 (요업(세라믹)기술원 기능소재팀) ;
  • 이성민 (요업(세라믹)기술원 기능소재팀) ;
  • 심광보 (한양대학교 신소재공학과) ;
  • 김형태 (요업(세라믹)기술원 기능소재팀)
  • Published : 2007.02.28

Abstract

Electrical properties of AlN ceramics sintered with 1 wt% $Y_2O_3$ have been investigated. From the impedance spectroscopy, electrical conductivity of grain boundary was found to be much lower than that of grain. DC conductivity measurement showed the electrode polarization effects caused by blocking electrode. The heat-treatment at $1700^{\circ}C$ of the specimen sintered at $1850^{\circ}C$ transformed continuous pain boundary phases along triple boundary junctions into isolated particles in grain comers. The heat-treatment induced decreases both in grain and grain boundary conductivity, and in DC electrical conductivities. From the analysis on the transference number, ionic conductivity was shown to be more dominant than electron conductivity, which was due to ion compensation mechanism during oxygen incorporation into grain.

Keywords

References

  1. R. Atkinson, 'A Simple Theory of the Johnsen-Rahbek Effect,' Brit. J. Appl. Phys., 2 [3] 325-332 (1969) https://doi.org/10.1088/0022-3727/2/3/303
  2. T. Watnabe, T. Kitabayashi, and C. Nakayama, 'Electrostatic Force and Absorption Current of Alumina Electrostatic Chuck,' Jpn. J. Appl. Phys., 31 2145-50 (1992) https://doi.org/10.1143/JJAP.31.2145
  3. T. Watnabe, T. Kitabayashi, and C. Nakayama, 'Relationship Between Electrical Resistivity and Electrostatic Force of Alumina Electrostatic Chuck,' Jpn. J. Appl. Phys., 32 864-871 (1993) https://doi.org/10.1143/JJAP.32.864
  4. J. van Elp, P. T. M. Giesen, and A. M. M. de Groof, 'Lowthermal Expansion Electrostatic Chuck Materials and Clamp Mechanisms in Vacuun and Air,' Microelectronic Eng., 73- 74 941-47 (2004) https://doi.org/10.1016/S0167-9317(04)00248-5
  5. G. Kalkowski, S. Risse, G. Harnisch, and V. Guyenot, 'Electrostatic Chucks for Lithography Applications,' Microelectronic Eng., 57-58 219-222 (2001) https://doi.org/10.1016/S0167-9317(01)00519-6
  6. J. C. Bang, 'Fabrication of Borosilicate Glass-Coated Electrostatic Chucks(in Korean),' J. Microelectronics & Packaging Soc., 9 [1] 49-52 (2002)
  7. G. Kalkowski, S. Risse, and V. Guyenot, 'Electrostatic Chuck Behavior at Ambient Conditions,' Microelectronic Eng., 61-62 357-61 (2002) https://doi.org/10.1016/S0167-9317(02)00501-4
  8. G. Kalkowski, S. Risse, S. Muller, and G. Harnisch, 'Electrostatic Chucks for EUV Masks,' Microelectronic Eng., 83 714-17 (2006) https://doi.org/10.1016/j.mee.2006.01.049
  9. C. M. Whang, W. J. Jeong, and S. W. Choi, 'Synthesis of Aluminum Nitride Powder from Aluminum Hydroxide by Carbothermal Reduction-Nitridation(in Korean),' J. Kor. Ceram. Soc., 31 [8] 893-901 (1994)
  10. W. S. Jung, 'Synthesis of Aluminum Nitride Powders and Whiskers from a $(NH_4)[Al(edta)]{\cdot}2H_2O$( Complex under a Flow of Nitrogen(in Korean),' J. Kor. Ceram. Soc., 39 [3] 272-277 (2002) https://doi.org/10.4191/KCERS.2002.39.3.272
  11. S. K. Yang and J. B. Kang, 'Synthesis of Aluminum Nitride Whisker by Carbothermal Reaction I. Effect of Fluoride Addition(in Korean),' J. Kor. Ceram. Soc., 41 [2] 118-24 (2004) https://doi.org/10.4191/KCERS.2004.41.2.118
  12. G. A. Slack, 'Nonmetallic Crystals with High Thermal Conductivity,' J. Phy. Chem. Solids, 34 321-35 (1973) https://doi.org/10.1016/0022-3697(73)90092-9
  13. R. W. Francis and W. L. Worrell, 'High Temperature Electrical Conductivity of Aluminum Nitride,' J. Electrochem. Soc., 123 [3] 430-433 (1976) https://doi.org/10.1149/1.2132844
  14. M. Yahagi and K. S. Goto, 'Ionic Conductivity of AlN Containing $Y_2O_3\;or\;Al_2O_3$ at 1173-1773 K,' J. Jpn. Inst. Metal, 47 [5] 419-425 (1983) https://doi.org/10.2320/jinstmet1952.47.5_419
  15. M. Zulfequar and A. Kumar, 'Electrical Conductivity and Dielectric Behavior of Hot-Pressed AlN,' Adv. Ceram. Mat., 3 [4] 332-336 (1988) https://doi.org/10.1111/j.1551-2916.1988.tb00229.x
  16. S. A. Jang and G. M. Choi, 'Electrical Conduction in Aluminum Nitride,' J. Am. Ceram. Soc., 76 [4] 957-60 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb05319.x
  17. K. Komeya, 'Effect of Various Additives on Sintering of AlN,' Yogyo-Kyokai-Shi, 89 [6] 330-336 (1981) https://doi.org/10.2109/jcersj1950.89.1030_330
  18. L. Weisenbach, J. A. S. Ikeda, and Y. M. Chiang, 'Distribution of Oxygen and Sintering Aids in AlN with High Thermal Conductivity,' Advances in Ceramics, 26 133 (1987)
  19. T. Takahashi, N. Iwase, A. Tsuga, and M. Nagata, 'Properties and Reliability of AlN Ceramics for Power Devices,' Advanced in Ceramics, 26 [159] (1987)
  20. W.-J. Kim, D. K. Kim, and C. H. Kim, 'Morphological Effect of Second Phase on the Thermal Conductivity of AlN Ceramics,' J. Am. Ceram. Soc., 79 [3] 1066-72 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08549.x
  21. H. Nakano, K. Watari, H. Hayashi, and K. Urabe, 'Microstructural Characterization of High-Thermal-Conductivity Aluminum Nitride Ceramic,' J. Am. Ceram. Soc., 85 [12] 3093-3095 (2002) https://doi.org/10.1111/j.1151-2916.2002.tb00587.x
  22. J. Jamnik and J. Maier, 'Treatment of the Impedance of Mixed Conductors Equivalent Circuit Model and Explicit Approximate Solutions,' J. Electrochem. Soc., 146 [11] 4183-4188 (1999) https://doi.org/10.1149/1.1392611
  23. J. Jamnik and J. Maier, 'Generalised Equivalent Circuits for Mass and Charge Transport: Chemical Capacitance and Its Implications,' Phy. Chem. Chem. Phys., 3 1668-1678 (2001) https://doi.org/10.1039/b100180i
  24. W. Lai and S. M. Haile, 'Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductor: A Case Study of Ceria,' J. Am. Ceram. Soc., 88 [11] 2979-2997 (2005) https://doi.org/10.1111/j.1551-2916.2005.00740.x
  25. Phase Diagrams for Ceramists, Fig. 2344

Cited by

  1. Effect of High Energy Ball Milling on Sintering Behavior and Thermal Conductivity of Direct Nitrided AlN Powder vol.48, pp.5, 2011, https://doi.org/10.4191/kcers.2011.48.5.418
  2. vol.29, pp.12, 2016, https://doi.org/10.4313/JKEM.2016.29.12.791
  3. Electrical Behavior of Aluminum Nitride Ceramics Sintered with Yttrium Oxide and Titanium Oxide vol.53, pp.6, 2016, https://doi.org/10.4191/kcers.2016.53.6.635
  4. Insulating Behavior of Sintered AlN Ceramics Prepared by High-Energy Bead Milling of AlN Powder vol.24, pp.6, 2017, https://doi.org/10.4150/KPMI.2017.24.6.444
  5. High-temperature ionic and electronic resistivity of MgO- and Ta2O5- doped aluminum nitride vol.72, pp.1, 2018, https://doi.org/10.3938/jkps.72.129