Hydrogen Sulfide Removal by Immobilized Thiobacillus novellas on $SiO_2$ in a Fluidized Bed Reactor

  • Cha, Jin-Myung (B&E Tech Co., Ltd.) ;
  • Shin, Hyun-Jae (Department of Chemical & Biochemical Engineering, Chosun University) ;
  • Roh, Sung-Hee (Department of Chemical & Biochemical Engineering, Chosun University) ;
  • Kim, Sun-Il (Department of Chemical & Biochemical Engineering, Chosun University)
  • 발행 : 2007.02.28

초록

The removal of hydrogen sulfide ($H_2S$) from aqueous media was investigated using Thiobacillus novellas cells immobilized on a $SiO_2$ carrier (biosand). The optimal growth conditions for the bacterial strain were $30^{\circ}C$ and initial pH of 7.0. The main product of hydrogen sulfide oxidation by T. novellus was identified as the sulfate ion. A removal efficiency of 98% was maintained in the three-phase fluidized-bed reactor, whereas the efficiency was reduced to 90% for the two-phase fluidized-bed reactor and 68% for the two-phase reactor without cells. The maximum gas removal capacity for the system was 254 g $H_2S/m^3/h$ when the inlet $H_2S$ loading was $300g/m^3/h(1,500ppm)$. Stable operation of the immobilized reactor was possible for 20 days with the inlet $H_2S$ concentration held to 1,100 ppm. The fluidized bed bioreactor appeared to be an effective means for controlling hydrogen sulfide emissions.

키워드

참고문헌

  1. Anders, B. J. and C. Webb. 1995. Treatment of H_{2} S-containing gases: A review of microbiological alternatives. Enzyme Microb. Technol. 17: 2-10 https://doi.org/10.1016/0141-0229(94)00080-B
  2. Cha, J. M., Y. Park, and I. W. Lee. 1994. Effect of cultivation condition on growth of the hydrogen sulfide-degrading Thiobacillus sp. IW isolated from waste cola mine water. Kor. J. Biotechnol. Bioeng. 9: 287-293
  3. Cha, J. M., W. S. Cha, and J. H. Lee. 1999. Removal of organo-sulphur odour compounds by Thiobacillus novellas SRM, sulphur-oxidizing microoganisms. Process Biochem. 34: 659-665 https://doi.org/10.1016/S0032-9592(98)00139-3
  4. Choi, D. B., D. B. Lee, and W. S. Cha. 2005. Process development for effective denitrification by biofilter using loess ball. J. Microbiol. Biotechnol. 15: 412-420
  5. Chung, Y., C. Huang, and C. P. Tseng. 1996. Biodegradation of hydrogen sulfide by a laboratory-scale immobilized Pseudomonas putida CH11 biofilter. Biotechnol. Progr. 12: 773-778
  6. Huebel, R. R. 1988. Hydrogen sulfide from sour gas, pp. 43-53. In: Encyclopedia of Chemical Processing and Design. Marcel Dekker, New York, U.S.A
  7. Kelly, D. P., L. A. Chambers, and P. A. Trudinger. 1969. Cyanolysis and spectrophotometric estimation othrithionate in mixture with thiosulfate and tetrathionate. Anal. Chem. 41: 898-901 https://doi.org/10.1021/ac60276a029
  8. Kim, K. R., K. J. Oh, K. Y. Park, and D. Kim. 1999. Removal of hydrogen sulfide and methylmercaptan using Thiobacillus in a three-phase fluidized-bed bioreactor. J. Microbiol. Biotechnol. 9: 265-270
  9. Kim, S. H., K. J. Oh, J. H. Moon, and D. Kim. 2000. Simultaneous removal of hydrogen sulfide and ammonia using Thiobacillus sp. IW in a three-phase fluidized-bed bioreactor. J. Microbiol. Biotechnol. 10: 419-422
  10. Kim, C. W., J. S. Park, S. K. Cho, K. J. Oh, Y. S. Kim, and D. Kim. 2003. Removal of hydrogen sulfide, ammonia and benzene by fluidized bed reactor and biofilter. J. Microbiol. Biotechnol. 13: 301-304
  11. Kim, J. S., H. W. Ryu, D. J. Jung, T. H. Lee, and K. S. Cho. 2005. Styrene degradation in a polyurethane biofilter inoculated with Pseudomonas sp. IS-3. J. Microbiol. Biotechnol. 15: 1207-1213
  12. Oh, K. J., D. Kim, and I. H. Lee. 1998. Development of effective hydrogen sulphide removing equipment using Thiobacillus sp. IW. Environ. Pollut. 99: 87-92 https://doi.org/10.1016/S0269-7491(97)00168-1
  13. Olsson, G. and B. Newell. 1999. Wastewater Treatment Systems, pp. 92-106. IWA Publishing, London, U.K
  14. Park, D. H., J. M. Cha, H. W. Ryu, G. W. Lee, E. Y. Yu, J. I. Rhee, J. J. Park, S. W. Kim, I. W. Lee, Y. I. Joe, Y. W. Ryu, B. K. Hur, J. K. Park, and K. M. Park. 2002. Hydrogen sulfide removal utilizing immobilized Thiobacillus sp. IW with Ca-alginate bead. Biochem. Eng. J. 11: 167-173 https://doi.org/10.1016/S1369-703X(02)00021-9
  15. Patricio, O., F. Arancibia, C. Canales, and G. E. Aroca. 2003. Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus. Process Biochem. 39: 165- 170 https://doi.org/10.1016/S0032-9592(03)00050-5
  16. Schreyer, H. B. and R. W. Coughlin. 1999. Effects of stratification in a fluidized bed bioreactor during treatment of metal working wastewater. Biotechnol. Bioeng. 63: 129- 140 https://doi.org/10.1002/(SICI)1097-0290(19990420)63:2<129::AID-BIT1>3.0.CO;2-O