Transcriptome Analysis of Phosphate Starvation Response in Escherichia coli

  • Baek, Jong-Hwan (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program) and BioProcess Engineering Research Center) ;
  • Lee, Sang-Yup (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program) and BioProcess Engineering Research Center)
  • Published : 2007.02.28

Abstract

Escherichia coli has a PhoR-PhoB two-component regulatory system to detect and respond to the changes of environmental phosphate concentration. For the E. coli W3110 strain growing under phosphate-limiting condition, the changes of global gene expression levels were investigated by using DNA microarray analysis. The expression levels of some genes that are involved in phosphate metabolism were increased as phosphate became limited, whereas those of the genes involved in ribosomal protein or amino acid metabolism were decreased, owing to the stationary phase response. The upregulated genes could be divided into temporarily and permanently inducible genes by phosphate starvation. At the peak point showing the highest expression levels of the phoB and phoR genes under phosphate-limiting condition, the phoB- and/or phoR-dependent regulatory mechanisms were investigated in detail by comparing the gene expression levels among the wild-type and phoB and/or phoR mutant strains. Overall, the phoB mutation was epistatic over the phoR mutation. It was found that PhoBR and PhoB were responsible for the upregulation of the phosphonate or glycerol phosphate metabolism and high-affinity phosphate transport system, respectively. These results show the complex regulation by the PhoR-PhoB two-component regulatory system in E. coli.

Keywords

References

  1. Baek, J. H. and S. Y. Lee. 2006. Novel gene members in the Pho regulon of Escherichia coli. FEMS Microbiol. Lett. 264: 104-109 https://doi.org/10.1111/j.1574-6968.2006.00440.x
  2. Datsenko, K. A. and B. L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640- 6645
  3. Eaton, A. D., L. S. Clesceri, and A. E. Greenberg (eds.). 1995. Standard Methods for the Examination of Water and Wastewater, 19th Ed. pp. 4-106-4-115
  4. Gourse, R. L., T. Gaal, M. S. Bartlett, J. A. Appleman, and W. Ross. 1996. rRNA transcription and growth ratedependent regulation of ribosome synthesis in Escherichia coli. Annu. Rev. Microbiol. 50: 645-677 https://doi.org/10.1146/annurev.micro.50.1.645
  5. Han, J. S., J. Y. Park, Y. S. Lee, B. Thony, and D. S. Hwang. 1999. PhoB-dependent transcriptional activation of the iciA gene during starvation for phosphate in Escherichia coli. Mol. Gen. Genet. 262: 448-452 https://doi.org/10.1007/s004380051104
  6. Hellingwerf, K. J., P. W. Postma, J. Tommassen, and H. V. Westerhoff. 1995 Signal transduction in bacteria: Phosphorneural network(s) in Escherichia coli? FEMS Microbiol. Rev. 16: 309-321 https://doi.org/10.1111/j.1574-6976.1995.tb00178.x
  7. Hoffer, S. M., H. V. Westerhoff, K. J. Hellingwerf, P. W. Postma, and J. Tommassen. 2001. Autoamplification of a two-component regulatory system results in 'learning' behavior. J. Bacteriol. 183: 4914-4917 https://doi.org/10.1128/JB.183.16.4914-4917.2001
  8. Ishige, T., M. Krause, M. Bott, V. F. Wendisch, and H. Sahm. 2003. The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J. Bacteriol. 185: 4519-4529 https://doi.org/10.1128/JB.185.15.4519-4529.2003
  9. Kim, J. S., H. Yun, H. U. Kim, H. S. Choi, T. Y. Kim, H. M. Woo, and S. Y. Lee. 2006. Resources for systems biology research. J. Microbiol. Biotechnol. 16: 832-848
  10. Krol, E. and A. Becker. 2004. Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. Mol. Gen. Genomics 272: 1- 17
  11. Landini, P. and M. R. Volkert. 2000. Regulatory responses of the adaptive response to alkylation damage: A simple regulon with complex regulatory features. J. Bacteriol. 182: 6543-6549 https://doi.org/10.1128/JB.182.23.6543-6549.2000
  12. Neidhardt, F. C., P. L. Bloch, and D. F. Smith. 1974. Culture medium for enterobacteria. J. Bacteriol. 119: 736-747
  13. Oh, M.-K., M.-J. Cha, S.-G. Lee, L. Rohlin, and J. C. Liao. 2006. Dynamic gene expression profiling of Escherichia coli in carbon source transition from glucose to acetate. J. Microbiol. Biotechnol. 16: 543-549
  14. Shin, J.-H., D.-H. Roh, G.-Y. Heo, G.-J. Joo, and I.-K. Rhee. 2001. Purification and characterization of a regulatory protein XylR in the D-xylose operon from Escherichia coli. J. Microbiol. Biotechnol. 11: 1002-1010
  15. Suziedeliene, E., K. Suziedelis, V. Garbenciute, and S. Normark. 1999. The acid-inducible asr gene in Escherichia coli: Transcriptional control by the phoBR operon. J. Bacteriol. 181: 2084-2093
  16. VanBogelen, R. A., E. R. Olson, B. L. Wanner, and F. C. Neidhardt. 1996. Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli. J. Bacteriol. 178: 4344-4366 https://doi.org/10.1128/jb.178.15.4344-4366.1996
  17. Wanner, B. L. 1996. Phosphorus assimilation and control of the phosphate regulon, pp. 1357-1381. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd Ed. ASM Press, Washington, D.C
  18. Wendisch, V. F. 2006. Genetic regulation of Corynebacterium glutamicum metabolism. J. Microbiol. Biotechnol. 16: 999- 1009