Metabolic Characterization of Lactic Acid Bacterium Lactococcus garvieae sk11, Capable of Reducing Ferric Iron, Nitrate, and Fumarate

  • Yun, Su-Hee (Department of Biological Engineering, Seokyeong University) ;
  • Hwang, Tae-Sik (Department of Biological Engineering, Seokyeong University) ;
  • Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
  • Published : 2007.02.28

Abstract

A lactic acid bacterium capable of anaerobic respiration was isolated from soil with ferric iron-containing glucose basal medium and identified as L. garvieae by using 16S rDNA sequence homology. The isolate reduced ferric iron, nitrate, and fumarate to ferrous iron, nitrite, and succinate, respectively, under anaerobic $N_2$ atmosphere. Growth of the isolate was increased about 30-39% in glucose basal medium containing nitrate and fumarate, but not in the medium containing ferric iron. Specifically, metabolic reduction of nitrate and fumarate is thought to be controlled by the specific genes fnr, encoding FNR-like protein, and nir, regulating fumarate-nitrate reductase. Reduction activity of ferric iron by the isolate was estimated physiologically, enzymologically, and electrochemically. The results obtained led us to propose that the isolate metabolized nitrate and fumarate as an electron acceptor and has specific enzymes capable of reducing ferric iron in coupling with anaerobic respiration.

Keywords

References

  1. Aguirre, M. and M. D. Collins. 1993. Lactic acid bacteria and human clinical infection. J. Appl. Bacteriol. 75: 95-107 https://doi.org/10.1111/j.1365-2672.1993.tb02753.x
  2. Arnold, R. G., M. R. Hoffmann, T. J. DIChristina, and F. W. Picardal. 1990. Regulation of dissimilatory Fe(III) reduction activity in Shewanella putrefaciens. Appl. Environ. Microbiol. 56: 2811-2817
  3. Chin, H. S., F. Breidt, H. P. Fleming, W. C. Shin, and S. S. Yoon. 2006. Identification of predominant bacterial isolates from the fermenting kimchi using ITS-PCR and partial 16S rDNA sequence analyses. J. Microbiol. Biotechnol. 16: 68-76
  4. Coppi, M. V., R. A. O'Neil, and D. R. Lovley. 2004. Identification of an uptake hydrogenase required for hydrogen-dependent reduction of Fe(III) and other electron acceptors by Geobacter sulfurreducens J. Bacteriol. 186: 3022-3028 https://doi.org/10.1128/JB.186.10.3022-3028.2004
  5. Dobbin, P. S., J. P. Carter, C. G. D. San Juna, M. von Hobe, A. K. Powell, and D. J. Richardson. 1999. Dissimilatory Fe(III) reduction by Clostridium beijerincki isolated from freshwater sediment using Fe(III) maltol enrichment. FEMS Microbiol. 176: 131-138 https://doi.org/10.1111/j.1574-6968.1999.tb13653.x
  6. Duwat, P., S. Sourice, B. Cesselin, G. Lamberet, K. Vido, P. Gaud, Y. L. Loir, F. Violet, P. Loubiére, and A. Gruss. 2001. Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J. Bacteriol. 183: 4509-4516 https://doi.org/10.1128/JB.183.15.4509-4516.2001
  7. Eldar, A., M. Goria, C. Ghittino, A. Zlotkin, and H. Bercovier. 1999. Biodiversity of Lactococcus garvieae strains isolated from fish in Europe, Asia and Australia. Appl. Environ. Microbiol. 65: 1005-1008
  8. Elliot, J. A., M. D. Collins, N. E. Pigott, and R. R. Facklam. 1991. Differenctiation of Lactococcus lactis and Lactococcus garvieae from humans by comparison of whole-cell protein patterns. J. Clin. Microbiol. 29: 2731-2734
  9. Facklam, R. R. and J. A. Elliot. 1995. Identification, classification and clinical relevance of catalase-negative, Gram-positive cocci, excluding the streptococci and entercoocci, Clin. Microbiol. Rev. 8: 479-495
  10. Fefer, J. J., K. R. Ratzan, S. E. Sharp, and E. Saiz. 1998. Lactococcus garvieae endocarditis: Report of a case and review of the literature. Diagn. Microbiol. Infect. Dis. 32: 127-130
  11. Gaudu, P., G. Lunberet, S. Ponet, and A. Grus. 2003. CcpA regulation of aerobic and respiration growth of L. lactis. Mol. Microbiol. 50: 183-192 https://doi.org/10.1046/j.1365-2958.2003.03700.x
  12. Gostic, D. O., H. G. Griffin, C. A. Shearman, C. Scott, J. Green, M. J. Gasson, and J. R. Guest. 1999. Two operons that encode FNR-like proteins in Lactococcus lactis. Mol. Microbiol. 31: 1523-1535 https://doi.org/10.1046/j.1365-2958.1999.01298.x
  13. Gottschalk, G. 1986. Bacterial Metabolism, 2nd Ed. pp. 208- 224. Springer-Verlag, New York
  14. Grabbe, R., A. Kuhh, and R. A. Schmitz. 2001. Cloning, sequencing and characterization of Fnr from Klebsiella pneumoniae. Antonie Van Leeuwenhoek 79: 319-326 https://doi.org/10.1023/A:1012060730647
  15. Hattori, T., K. Takahashi, T. Nakanishi, H. Ohta, K. Fukui, S. Taniguchi, and M. Takigawa. 1996. Novel FNR homologues identified in four representative oral facultative anaerobes: Capnocytophaga ochracea, Capnocytophaga sputigena, Haemophilus aphrophilus, and Actinobacillus actinomycetemcomitans. FEMS Microbiol. Lett. 137: 213- 220 https://doi.org/10.1111/j.1574-6968.1996.tb08108.x
  16. He, Q. and R. A. Sanford. 2003. Characterization of Fe(III) reduction by chlororespiring Anaeromxyobacter dehalogenans. Appl. Envir. Microbiol. 69: 2712-2718 https://doi.org/10.1128/AEM.69.5.2712-2718.2003
  17. Iuchi, S. and E. C. Lin. 1987. Molybdenum effector of fumarate reductase repression and nitrate reductase induction in Escherichia coli. J. Bacteriol. 169: 3720-3725 https://doi.org/10.1128/jb.169.8.3720-3725.1987
  18. Jeon, S. J., I. H. Shin, B. I. Sang, and D. H. Park. 2005. Electrochemical regeneration of FAD by catalytic electrode without electron mediator and biochemical reducing power. J. Microbiol. Biotechnol. 15: 281-286
  19. Jones, H. M. and R. P. Gunsalus. 1985. Transcription of the Escherichia coli fumarate reductase genes (frdABCD) and their coordinate regulation by oxygen, nitrate, and fumarate. J. Bacteriol. 164: 1100-1109
  20. Lascelles, J. and K. A. Burke. 1978. Reduction of ferric iron by L-lactate and DL-glycerol-3-phosphate in membrane preparations from Staphylococcus aureus and interactions with the nitrate reductase system. J. Bacteriol. 134: 585-589
  21. Lovely, D. R. and E. J. P. Phillips. 1986. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River. Appl. Envir. Microbiol. 52: 751-757
  22. McInerney, M. J. and P. S. Beaty. 1988. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to disimmilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54: 1472-1480
  23. Moat, A. G., J. W. Foster, and M. P. Spector. 2002. Microbial Physiology, 4th Ed. pp. 368-393. Wiley-Less. New York
  24. Ohmura, N., N. Matsumoto, K. Sasaki, and H. Saiki. 2002. Electrochemical regeneration of Fe(III) to support growth on anaerobic iron respiration. Appl. Envir. Microbiol. 68: 405-407 https://doi.org/10.1128/AEM.68.1.405-407.2002
  25. Overton, T., E. G. F. Reid, R. Foxall, H. Smith, S. J. W. Busby, and J. A. Cole. 2003. Transcription activation at Escherichia coli FNR-dependent promoters by the gonococcal FNR protein: Effects of a novel s18f substitution and comparisons with the corresponding substitution in E. coli FNR. J. Bacteriol. 185: 4734-4747 https://doi.org/10.1128/JB.185.16.4734-4747.2003
  26. Park, D. H. and B. H. Kim. 2001. Growth properties of the iron-reducing bacteria, Shewanella putrefaciens IR-1 and MR-1, coupling to reduction of Fe(III) to Fe(II). J. Microbiol. 39: 273-278
  27. Park, D. H. and J. G. Zeikus. 2002. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 59: 58-61 https://doi.org/10.1007/s00253-002-0972-1
  28. Park, D. H. and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 81: 348-355 https://doi.org/10.1002/bit.10501
  29. Park, D. H., Y. K. Park, and E. S. Choi. 2004. Application of single-compartment bacterial fuel cell (SCBFC) using modified electrodes with metal ions to wastewater treatment reactor. J. Microbiol. Biotechnol. 14: 1120-1128
  30. Park, S. M., H. S. Kang, and D. H. Park. 2004. Metabolic flux shift of Weissella kimchii sk10 grown under aerobic conditions. J. Microbiol. Biotechnol. 14: 919-923
  31. Park, S. M., H. S. Kang, D. W. Park, and D. H. Park. 2005. Electrochemical control of metabolic flux of Weissella kimchii sk10: Neutral red immobilized in cytoplasmic membrane as electron channel. J. Microbiol. Biotechnol. 15: 80-83
  32. Phillips, E. J. P. and D. R. Lovely. 1987. Determination of Fe(III) and Fe(II) in oxalate extracts of sediment. Soil Sci. Soc. Am. J. 51: 938-941 https://doi.org/10.2136/sssaj1987.03615995005100040021x
  33. Reents, H., R. Münch, T. Dammeyer, D. Jahn, and E. Hartig. 2006. The fnr regulon of Bacillus subtilis. J. Bacteriol. 188: 1103-1112 https://doi.org/10.1128/JB.188.3.1103-1112.2006
  34. Senko, J. M. and J. F. Stolz. 2001. Evidence for irondependent nitrate respiration in the dissimilatory ironreducing bacterium Geobacter metallireducens. Appl. Envir. Microbiol. 67: 3750-3752 https://doi.org/10.1128/AEM.67.8.3750-3752.2001
  35. Shaw, D. J. and J. R. Guest. 1982. Nucleotide sequence of the fnr gene and primary structure of the fnr gene protein of Escherichia coli. Nucleic Acids Res. 10: 6119-6130 https://doi.org/10.1093/nar/10.19.6119
  36. Shin, I. H., S. J. Jeon, H. S. Park, and D. H. Park. 2004. Catalytic oxidoreduction of pyruvate/lactate and acetaldehyde/ ethanol coupled to electrochemical oxidoreduction of $NAD^{+}$/ NADH. J. Microbiol. Biotechnol. 14: 540-546
  37. Sorensen, J. 1982. Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl. Envir. Microbiol. 43: 319-324
  38. Spiro, S. and J. R. Guest. 1987. E. coli fnr gene encoding a transcriptional activator (FNR), 5'-flanking region. J. Gen. Microbiol. 133: 3279-3288
  39. Sugio, T., C. Domatsu, O. Munakata, T. Tano, and K. Imai. 1985. Role of a ferric ion-reducing system in sulfur oxidation of Thiobacillus ferrooxidans. Appl. Envir. Microbiol. 49: 1401-1406
  40. Teixeira, L. M., V. L. C. Mergquior, C. E. Vianni, M. G. S. Carvalho, S. E. L. Fracalanzza, A. G. Steigerwalt, D. J. Brenner, and R. R. Facklam. 1996. Phenotypic and genotypic characterization of atypical Lactococcus garvieae strains isolated from water buffalo with subclinical mastitis and confirmation of L. garvieae as a senior subjective synonym of Enterocuoccus seriolicida. Int. J. Syst. Bacteriol. 46: 664-668 https://doi.org/10.1099/00207713-46-3-664
  41. Thaurer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100-180
  42. Vido, K., D. I. Bars, M.-Y. Mistou, P. Anglade, A. Gruss, and P. Gaudu. 2004. Proteome analyses of heme-dependent respiration in Lactococcus lactis: Involvement of the proteolytic system. J. Bacteriol. 186: 1648-1657 https://doi.org/10.1128/JB.186.6.1648-1657.2004
  43. Zlotskin, A., A. Eldar, C. Ghittino, and H. Bercovier. 1998. Identification of Lactococcus garvieae by PCR. J. Clin. Microbiol. 36: 983-985