References
-
Adrianne, D. B., Kathy, M. C. & Claire E. H. Alleviation of mechanical and thermal allodynia by
$CGRP_{8-37}$ in a rodent model of chronic central pain. Pain 86: 163-175 (2000) https://doi.org/10.1016/S0304-3959(00)00242-6 - Audet, J. Stem cell bioengineering for regenerative medicine. Expert Opinion on Biological Therapy 4: 631-644 (2004) https://doi.org/10.1517/14712598.4.5.631
- Barat, M., Dehail, P. & De Seze, M. Fatigue after spinal cord injury. Annales de Réadaptation et de Médecine Physique 49:365-369 (2006) https://doi.org/10.1016/j.annrmp.2006.04.014
- Bartolomei, J. C. & Greer, C. A. Olfactory ensheathing cells: Bridging the gap in spinal cord injury. Neurosurgery 47:1057-1069 (2000) https://doi.org/10.1097/00006123-200011000-00006
- Bhadra, N., Kilgore, K. L. & Peckham, P. H. Implanted stimulators for restoration of function in spinal cord injury. Medical Engineering & Physics 23:19-28 (2001) https://doi.org/10.1016/S1350-4533(01)00012-1
- Brodhun, M., Bauer, R. & Patt, S. Potential stem cell therapy and application in neurotrauma. Experimental and Toxicologic Pathology 56:103-112 (2004) https://doi.org/10.1016/j.etp.2004.04.004
- Brown, D. J., Hill, S. T. & Baker, H. W. G. Male fertility and sexual function after spinal cord injury. Progress in Brain Research 152:427-439 (2005)
- Chaudhry, N., Silva, U. D. & Smith, G. M. Cell adhesion molecule L1 modulates nerve-growth-factorinduced CGRP-IR fiber sprouting. Experimental Neurology 202:238-249 (2006) https://doi.org/10.1016/j.expneurol.2006.06.001
- Chia, L. C. et al. Enhancement of operational efficiencies for people with high cervical spinal cord injuries using a glexible integrated pointing device apparatus. Archives of Physical Medicine and Rehabilitation 87:866-873 (2006) https://doi.org/10.1016/j.apmr.2006.02.025
- Chong, M. S. & Zahid H. B. Diagnosis and treatment of neuropathic pain. Journal of Pain and Symptom Management 25:S4-S11 (2003) https://doi.org/10.1016/S0885-3924(03)00064-2
- David, J. B., Douglas, J. B., Donald, A. C. & Robert J. P. A Longitudinal evaluation of sleep and breathing in the first year after cervical spinal cord injury. Archives of Physical Medicine and Rehabilitation 86:1193-1199 (2005) https://doi.org/10.1016/j.apmr.2004.11.033
- Deumens, R. et al. Stimulation of neurite outgrowth on neonatal cerebral astrocytes is enhanced in the presence of BDNF. Neuroscience Letters 407: 268-273 (2006) https://doi.org/10.1016/j.neulet.2006.08.059
- Eliana, S. C. et al. Assessing the influence of wheelchair technology on perception of participation in spinal cord injury. Archives of Physical Medicine and Rehabilitation 85:1854-1858 (2004) https://doi.org/10.1016/j.apmr.2004.03.033
- Elliot, K. Implantable devices for pain control: spinal cord stimulation and intrathecal therapies. Best Practice & Research Clinical Anaesthesiology 16:619-649 (2002) https://doi.org/10.1053/bean.2002.0263
- Enomoto, M., Wakabayashi, Y., Oi, M. L. & Shinomiya, K. Present situation and future aspects of spinal cord regeneration. Journal of Orthopaedic Science 9:108-112 (2004) https://doi.org/10.1007/s00776-003-0740-9
- Fiedler, I. G., Laud, P. W., Maiman, D. J. & Apple, D. F. Economics of managed care in spinal cord injury. Archives of Physical Medicine and Rehabilitation 80:1441-1449 (1999) https://doi.org/10.1016/S0003-9993(99)90256-3
- Friedman, J. A. et al. Biodegradable polymer grafts for surgical repair of the injured spinal cord. Neurosurgery 51:742-751 (2002) https://doi.org/10.1097/00006123-200209000-00024
- Geller, H. M. & Fawcett, J. W. Buidling a bridge: engineering spinal cord repair. Experimental Neurology 174:125-136 (2002) https://doi.org/10.1006/exnr.2002.7865
- Giannetti, S. et al. Acrylic hydrogel implants after spinal cord lesion in the adult rat. Neurological Research 23:405-409 (2001) https://doi.org/10.1179/016164101101198622
- Gonzalez, R. et al. Reducing inflammation decreases secondary degeneration and functional deficit after spinal cord injury. Experimental Neurology 184:456-463 (2003) https://doi.org/10.1016/S0014-4886(03)00257-7
- Graham, H. C. et al. An implantable neuroprosthesis for restoring bladder and bowel control to patients with spinal cord injuries: A multicenter trial. Archives of Physical Medicine and Rehabilitation 82:1512-1519 (2001) https://doi.org/10.1053/apmr.2001.25911
- Graham, H. C. & John, E. D. Economic consequences of an implanted neuroprosthesis for bladder and bowel management. Archives of Physical Medicine and Rehabilitation 82:1520-1525 (2001) https://doi.org/10.1053/apmr.2001.25912
- Graham, J., Booth, V. & Jung, R. Modeling motoneurons after spinal cord injury: persistent inward currents and plateau potentials. Neurocomputing 65-66: 719-726 (2005) https://doi.org/10.1016/j.neucom.2004.10.067
- Hideyuki, O. et al. Transplantation of neural stem cells into the spinal cord after injury. Seminars in Cell & Developmental Biology 14:191-198 (2003) https://doi.org/10.1016/S1084-9521(03)00011-9
- Hurtado, A. et al. Poly(D, L-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord. Biomaterials 27:430-442 (2006) https://doi.org/10.1016/j.biomaterials.2005.07.014
- Iannotti, C. et al. Glial cell line-derived neurotrophic factor-enriched bridging transplants promote propriospinal axonal regeneration and enhance myelination after spinal cord injury. Experimental Neurology 183:379-393 (2003). https://doi.org/10.1016/S0014-4886(03)00188-2
- Jain, A., Kim, Y. T., McKeon, R. J. & Bellamkonda, R. V. In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials 27:497-504 (2006) https://doi.org/10.1016/j.biomaterials.2005.07.008
- John, W. M. & Cristina, S. Spinal cord injury. The Lancet 359:417-425 (2002) https://doi.org/10.1016/S0140-6736(02)07603-1
- Kafetsoulis, A. et al. Current trends in the treatment of infertility in men with spinal cord injury. Fertility and Sterility 86:781-789 (2006) https://doi.org/10.1016/j.fertnstert.2006.01.060
- Karlsson, A. K. Autonomic dysfunction in spinal cord injury: clinical presentation of symptoms and signs. Progress in Brain Research 152:1-8 (2005) https://doi.org/10.1016/S0079-6123(05)52034-X
- Kim, J. E., Liu, B. P., Park, J. H. & Strittmatter, S. M. Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury. Neuron 44:439-451 (2004) https://doi.org/10.1016/j.neuron.2004.10.015
- Koichi, H. et al. Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury. Experimental Neurology 193: 394-410 (2005) https://doi.org/10.1016/j.expneurol.2004.12.024
- Kwon, B. K. & Tetzlaff, W. Spinal cord regeneration from gene to transplants. Spine 26:513-522 (2001)
- Maria, K., Debjani, C., Elizabeth, K. & Brian, D. S. Pre- and post-alpha motoneuronal control of the soleus H-reflex during sinusoidal hip movements in human spinal cord injury. Brain Research 1103:123-139 (2006) https://doi.org/10.1016/j.brainres.2006.05.036
- Maria, C. J. H., Eve, C. T., Charles, H. T. & Molly, S. S. Novel intrathecal delivery system for treatment of spinal cord injury. Experimental Neurology 182: 300-309 (2003) https://doi.org/10.1016/S0014-4886(03)00040-2
- Martini, F. H. Anatomy and physiology. Prentice Hall International, INC (1998 & 2001)
- Moore, M. J. et al. Multiple-channel scaffolds to promote spinal cord axon regeneration. Biomaterials 27: 419-429 (2006) https://doi.org/10.1016/j.biomaterials.2005.07.045
- Novikova, L. N., Novikov, L. N. & Kellerth, J. O. Biopolymers and biodegradable smart implants for tissue regeneration after spinal cord Injury. Current Opinion in Neurology 16:711-715 (2003) https://doi.org/10.1097/00019052-200312000-00011
- O'Connor, P. J. Trends in spinal cord injury. Accident Analysis & Prevention 38:71-77 (2006) https://doi.org/10.1016/j.aap.2005.03.025
- Osamu, Y. et al. Morphological and functional factors predicting bladder deterioration after spinal cord injury. The journal of Urology 155:271-274 (1996)
- Patist, C. M. et al. Freeze-dried poly(D, L-lactic acid) macroporous guidance scaffolds impregnated with brain-derived neutophic factor in the transected adultrat thoracic spinal cord. Biomaterials 25:1569-1582 (2004) https://doi.org/10.1016/S0142-9612(03)00503-9
- Peter, C. W. Prospects for antiapoptotic drug therapy of neurodegenerative diseases. Progress in Neuro-Psychopharmacology and Biological Psychiatry 27: 303-321 (2003) https://doi.org/10.1016/S0278-5846(03)00025-3
- Sara J. T. & Shelly E. S. Effect of controlled delivery of neurotrophin-3 from fibrin on spinal cord injury in a long term model. Journal of Controlled Release 116:204-210 (2006) https://doi.org/10.1016/j.jconrel.2006.07.005
- Schmitt, C. et al. Changes in spinal cord injury-induced gene expression in rat are strain-dependent. The Spine Journal 6:113-119 (2006). https://doi.org/10.1016/j.spinee.2005.05.379
- Stacy L. E. Problems of sexual function after spinal cord injury. Progress in Brain Research 152:387-399 (2005) https://doi.org/10.1016/S0079-6123(05)52026-0
- Stokols, S. & Tuszynski, M. H. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials 27:443-451 (2006) https://doi.org/10.1016/j.biomaterials.2005.06.039
- Stokols, S. & Tuszynski, M. H. The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury. Biomaterials 25:5839-5846 (2004) https://doi.org/10.1016/j.biomaterials.2004.01.041
- Strauss, D. J., DeVivo, M. J., Paculdo, D. R. & Shavelle, R. M. Trends in life expectancy after spinal cord injury. Archives of Physical Medicine and Rehabilitation 87:1079-1085 (2006) https://doi.org/10.1016/j.apmr.2006.04.022
- Terence, M. M., Susan, E. M. & John, W. M. Stem cell transplantation and other novel techniques for promoting recovery from spinal cord injury. Transplant Immunology 12:343-358 (2004) https://doi.org/10.1016/j.trim.2003.12.017
- Tsai, E. C., Dalton, P. D., Shoichet, M. S. & Tator, C. H. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Biomaterials 27:519-533 (2006) https://doi.org/10.1016/j.biomaterials.2005.07.025
-
Woerly, S. et al. Spinal cord repair with PHPMA hydrogel containing RGD peptides (
$NeuroGel^{TM}$ ). Biomaterials 22:1095-1111 (2001) https://doi.org/10.1016/S0142-9612(00)00354-9 - Wu, S. et al. Bone marrow stromal cells enhance differentiation of cocultured neuroshere cells and promote regeneration of injured spinal cord. Journal of Neuroscience Research 73:343-351 (2003)
- Willerth, S. M., Arendas, K. J., Gottlieb, D. I. & Sakiyama- Elbert, S. E. Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials 27:5990-6003 (2006) https://doi.org/10.1016/j.biomaterials.2006.07.036
- Zandstra, P. & Nagy, A. Stem cell bioengineering. Annual Review of Biomedical Engineering 3:275-305 (2001) https://doi.org/10.1146/annurev.bioeng.3.1.275