Spinal Cord Injury Treatment using a Noble Biocompatible Bridge

  • Published : 2007.09.30

Abstract

The failure of injured axons to regenerate in the mature central nervous system (CNS) has devastating consequences for victims of spinal cord injury (SCI). Traditional strategies to treat spinal cord injured people by using drug therapy and assisting devices that can not help them to recover fully various vital functions of the spinal cord. Many researches have been focused on accomplishing re-growth and reconnection of the severed axons in the injured region. Using cell transplantation to promote neural survival or growth has had modest success in allowing injured neurons to re-grow through the area of the lesion. Strategies for successful regeneration will require tissue engineering approach. In order to persuade sufficient axons to regenerate across the lesion to bring back substantial neurological function, it is necessary to construct an efficient biocompatible bridge (cell-free or implanted with different cell lines as hybrid implant) through the injured area over which axons can grow. Therefore, in this paper, spinal cord and its injury, different strategies to help regeneration of an injured spinal cord are reviewed. In addition, different aspects of designing a biocompatible bridge and its applications and challenges surrounding these issues are also addressed. This knowledge is very important for the development and optimalization of therapies to repair the injured spinal cord.

Keywords

References

  1. Adrianne, D. B., Kathy, M. C. & Claire E. H. Alleviation of mechanical and thermal allodynia by $CGRP_{8-37}$ in a rodent model of chronic central pain. Pain 86: 163-175 (2000) https://doi.org/10.1016/S0304-3959(00)00242-6
  2. Audet, J. Stem cell bioengineering for regenerative medicine. Expert Opinion on Biological Therapy 4: 631-644 (2004) https://doi.org/10.1517/14712598.4.5.631
  3. Barat, M., Dehail, P. & De Seze, M. Fatigue after spinal cord injury. Annales de Réadaptation et de Médecine Physique 49:365-369 (2006) https://doi.org/10.1016/j.annrmp.2006.04.014
  4. Bartolomei, J. C. & Greer, C. A. Olfactory ensheathing cells: Bridging the gap in spinal cord injury. Neurosurgery 47:1057-1069 (2000) https://doi.org/10.1097/00006123-200011000-00006
  5. Bhadra, N., Kilgore, K. L. & Peckham, P. H. Implanted stimulators for restoration of function in spinal cord injury. Medical Engineering & Physics 23:19-28 (2001) https://doi.org/10.1016/S1350-4533(01)00012-1
  6. Brodhun, M., Bauer, R. & Patt, S. Potential stem cell therapy and application in neurotrauma. Experimental and Toxicologic Pathology 56:103-112 (2004) https://doi.org/10.1016/j.etp.2004.04.004
  7. Brown, D. J., Hill, S. T. & Baker, H. W. G. Male fertility and sexual function after spinal cord injury. Progress in Brain Research 152:427-439 (2005)
  8. Chaudhry, N., Silva, U. D. & Smith, G. M. Cell adhesion molecule L1 modulates nerve-growth-factorinduced CGRP-IR fiber sprouting. Experimental Neurology 202:238-249 (2006) https://doi.org/10.1016/j.expneurol.2006.06.001
  9. Chia, L. C. et al. Enhancement of operational efficiencies for people with high cervical spinal cord injuries using a glexible integrated pointing device apparatus. Archives of Physical Medicine and Rehabilitation 87:866-873 (2006) https://doi.org/10.1016/j.apmr.2006.02.025
  10. Chong, M. S. & Zahid H. B. Diagnosis and treatment of neuropathic pain. Journal of Pain and Symptom Management 25:S4-S11 (2003) https://doi.org/10.1016/S0885-3924(03)00064-2
  11. David, J. B., Douglas, J. B., Donald, A. C. & Robert J. P. A Longitudinal evaluation of sleep and breathing in the first year after cervical spinal cord injury. Archives of Physical Medicine and Rehabilitation 86:1193-1199 (2005) https://doi.org/10.1016/j.apmr.2004.11.033
  12. Deumens, R. et al. Stimulation of neurite outgrowth on neonatal cerebral astrocytes is enhanced in the presence of BDNF. Neuroscience Letters 407: 268-273 (2006) https://doi.org/10.1016/j.neulet.2006.08.059
  13. Eliana, S. C. et al. Assessing the influence of wheelchair technology on perception of participation in spinal cord injury. Archives of Physical Medicine and Rehabilitation 85:1854-1858 (2004) https://doi.org/10.1016/j.apmr.2004.03.033
  14. Elliot, K. Implantable devices for pain control: spinal cord stimulation and intrathecal therapies. Best Practice & Research Clinical Anaesthesiology 16:619-649 (2002) https://doi.org/10.1053/bean.2002.0263
  15. Enomoto, M., Wakabayashi, Y., Oi, M. L. & Shinomiya, K. Present situation and future aspects of spinal cord regeneration. Journal of Orthopaedic Science 9:108-112 (2004) https://doi.org/10.1007/s00776-003-0740-9
  16. Fiedler, I. G., Laud, P. W., Maiman, D. J. & Apple, D. F. Economics of managed care in spinal cord injury. Archives of Physical Medicine and Rehabilitation 80:1441-1449 (1999) https://doi.org/10.1016/S0003-9993(99)90256-3
  17. Friedman, J. A. et al. Biodegradable polymer grafts for surgical repair of the injured spinal cord. Neurosurgery 51:742-751 (2002) https://doi.org/10.1097/00006123-200209000-00024
  18. Geller, H. M. & Fawcett, J. W. Buidling a bridge: engineering spinal cord repair. Experimental Neurology 174:125-136 (2002) https://doi.org/10.1006/exnr.2002.7865
  19. Giannetti, S. et al. Acrylic hydrogel implants after spinal cord lesion in the adult rat. Neurological Research 23:405-409 (2001) https://doi.org/10.1179/016164101101198622
  20. Gonzalez, R. et al. Reducing inflammation decreases secondary degeneration and functional deficit after spinal cord injury. Experimental Neurology 184:456-463 (2003) https://doi.org/10.1016/S0014-4886(03)00257-7
  21. Graham, H. C. et al. An implantable neuroprosthesis for restoring bladder and bowel control to patients with spinal cord injuries: A multicenter trial. Archives of Physical Medicine and Rehabilitation 82:1512-1519 (2001) https://doi.org/10.1053/apmr.2001.25911
  22. Graham, H. C. & John, E. D. Economic consequences of an implanted neuroprosthesis for bladder and bowel management. Archives of Physical Medicine and Rehabilitation 82:1520-1525 (2001) https://doi.org/10.1053/apmr.2001.25912
  23. Graham, J., Booth, V. & Jung, R. Modeling motoneurons after spinal cord injury: persistent inward currents and plateau potentials. Neurocomputing 65-66: 719-726 (2005) https://doi.org/10.1016/j.neucom.2004.10.067
  24. Hideyuki, O. et al. Transplantation of neural stem cells into the spinal cord after injury. Seminars in Cell & Developmental Biology 14:191-198 (2003) https://doi.org/10.1016/S1084-9521(03)00011-9
  25. Hurtado, A. et al. Poly(D, L-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord. Biomaterials 27:430-442 (2006) https://doi.org/10.1016/j.biomaterials.2005.07.014
  26. Iannotti, C. et al. Glial cell line-derived neurotrophic factor-enriched bridging transplants promote propriospinal axonal regeneration and enhance myelination after spinal cord injury. Experimental Neurology 183:379-393 (2003). https://doi.org/10.1016/S0014-4886(03)00188-2
  27. Jain, A., Kim, Y. T., McKeon, R. J. & Bellamkonda, R. V. In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials 27:497-504 (2006) https://doi.org/10.1016/j.biomaterials.2005.07.008
  28. John, W. M. & Cristina, S. Spinal cord injury. The Lancet 359:417-425 (2002) https://doi.org/10.1016/S0140-6736(02)07603-1
  29. Kafetsoulis, A. et al. Current trends in the treatment of infertility in men with spinal cord injury. Fertility and Sterility 86:781-789 (2006) https://doi.org/10.1016/j.fertnstert.2006.01.060
  30. Karlsson, A. K. Autonomic dysfunction in spinal cord injury: clinical presentation of symptoms and signs. Progress in Brain Research 152:1-8 (2005) https://doi.org/10.1016/S0079-6123(05)52034-X
  31. Kim, J. E., Liu, B. P., Park, J. H. & Strittmatter, S. M. Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury. Neuron 44:439-451 (2004) https://doi.org/10.1016/j.neuron.2004.10.015
  32. Koichi, H. et al. Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury. Experimental Neurology 193: 394-410 (2005) https://doi.org/10.1016/j.expneurol.2004.12.024
  33. Kwon, B. K. & Tetzlaff, W. Spinal cord regeneration from gene to transplants. Spine 26:513-522 (2001)
  34. Maria, K., Debjani, C., Elizabeth, K. & Brian, D. S. Pre- and post-alpha motoneuronal control of the soleus H-reflex during sinusoidal hip movements in human spinal cord injury. Brain Research 1103:123-139 (2006) https://doi.org/10.1016/j.brainres.2006.05.036
  35. Maria, C. J. H., Eve, C. T., Charles, H. T. & Molly, S. S. Novel intrathecal delivery system for treatment of spinal cord injury. Experimental Neurology 182: 300-309 (2003) https://doi.org/10.1016/S0014-4886(03)00040-2
  36. Martini, F. H. Anatomy and physiology. Prentice Hall International, INC (1998 & 2001)
  37. Moore, M. J. et al. Multiple-channel scaffolds to promote spinal cord axon regeneration. Biomaterials 27: 419-429 (2006) https://doi.org/10.1016/j.biomaterials.2005.07.045
  38. Novikova, L. N., Novikov, L. N. & Kellerth, J. O. Biopolymers and biodegradable smart implants for tissue regeneration after spinal cord Injury. Current Opinion in Neurology 16:711-715 (2003) https://doi.org/10.1097/00019052-200312000-00011
  39. O'Connor, P. J. Trends in spinal cord injury. Accident Analysis & Prevention 38:71-77 (2006) https://doi.org/10.1016/j.aap.2005.03.025
  40. Osamu, Y. et al. Morphological and functional factors predicting bladder deterioration after spinal cord injury. The journal of Urology 155:271-274 (1996)
  41. Patist, C. M. et al. Freeze-dried poly(D, L-lactic acid) macroporous guidance scaffolds impregnated with brain-derived neutophic factor in the transected adultrat thoracic spinal cord. Biomaterials 25:1569-1582 (2004) https://doi.org/10.1016/S0142-9612(03)00503-9
  42. Peter, C. W. Prospects for antiapoptotic drug therapy of neurodegenerative diseases. Progress in Neuro-Psychopharmacology and Biological Psychiatry 27: 303-321 (2003) https://doi.org/10.1016/S0278-5846(03)00025-3
  43. Sara J. T. & Shelly E. S. Effect of controlled delivery of neurotrophin-3 from fibrin on spinal cord injury in a long term model. Journal of Controlled Release 116:204-210 (2006) https://doi.org/10.1016/j.jconrel.2006.07.005
  44. Schmitt, C. et al. Changes in spinal cord injury-induced gene expression in rat are strain-dependent. The Spine Journal 6:113-119 (2006). https://doi.org/10.1016/j.spinee.2005.05.379
  45. Stacy L. E. Problems of sexual function after spinal cord injury. Progress in Brain Research 152:387-399 (2005) https://doi.org/10.1016/S0079-6123(05)52026-0
  46. Stokols, S. & Tuszynski, M. H. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials 27:443-451 (2006) https://doi.org/10.1016/j.biomaterials.2005.06.039
  47. Stokols, S. & Tuszynski, M. H. The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury. Biomaterials 25:5839-5846 (2004) https://doi.org/10.1016/j.biomaterials.2004.01.041
  48. Strauss, D. J., DeVivo, M. J., Paculdo, D. R. & Shavelle, R. M. Trends in life expectancy after spinal cord injury. Archives of Physical Medicine and Rehabilitation 87:1079-1085 (2006) https://doi.org/10.1016/j.apmr.2006.04.022
  49. Terence, M. M., Susan, E. M. & John, W. M. Stem cell transplantation and other novel techniques for promoting recovery from spinal cord injury. Transplant Immunology 12:343-358 (2004) https://doi.org/10.1016/j.trim.2003.12.017
  50. Tsai, E. C., Dalton, P. D., Shoichet, M. S. & Tator, C. H. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Biomaterials 27:519-533 (2006) https://doi.org/10.1016/j.biomaterials.2005.07.025
  51. Woerly, S. et al. Spinal cord repair with PHPMA hydrogel containing RGD peptides ($NeuroGel^{TM}$). Biomaterials 22:1095-1111 (2001) https://doi.org/10.1016/S0142-9612(00)00354-9
  52. Wu, S. et al. Bone marrow stromal cells enhance differentiation of cocultured neuroshere cells and promote regeneration of injured spinal cord. Journal of Neuroscience Research 73:343-351 (2003)
  53. Willerth, S. M., Arendas, K. J., Gottlieb, D. I. & Sakiyama- Elbert, S. E. Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials 27:5990-6003 (2006) https://doi.org/10.1016/j.biomaterials.2006.07.036
  54. Zandstra, P. & Nagy, A. Stem cell bioengineering. Annual Review of Biomedical Engineering 3:275-305 (2001) https://doi.org/10.1146/annurev.bioeng.3.1.275