Effects of Water Temperature and Body Weight on Oxygen Consumption Rate of Black Rockfish, Sebastes schlegeli

조피볼락, Sebastes schlegeli의 산소 소비율에 미치는 수온과 체중의 영향

  • Oh, Sung-Yong (Marine Resources Research Department, Korea Ocean Research & Development Institute) ;
  • Noh, Choong Hwan (Marine Resources Research Department, Korea Ocean Research & Development Institute) ;
  • Myoung, Jung-Goo (Marine Resources Research Department, Korea Ocean Research & Development Institute) ;
  • Jo, Jae-Yoon (Department of Aquaculture, Pukyong National University)
  • 오승용 (한국해양연구원 해양생물자원연구본부) ;
  • 노충환 (한국해양연구원 해양생물자원연구본부) ;
  • 명정구 (한국해양연구원 해양생물자원연구본부) ;
  • 조재윤 (부경대학교 양식학과)
  • Received : 2007.01.05
  • Accepted : 2007.03.05
  • Published : 2007.03.31


The effect of water temperature (T) and body weight (W) on the oxygen consumption of the fasted black rockfish, Sebastes schlegeli was investigated to provide empirical data for the culture management and bioenergetic growth model of this species. The mean wet body weights of two fish groups used for the present experiment were $12.9{\pm}2.7g$ ($mean{\pm}SD$) and $351.1{\pm}9.2g$. The oxygen consumption rate (OCR) was measured under three water temperature regimes (15, 20 and $25^{\circ}C$) at an interval of 5 minutes for 24 hours using a continuous flow-through respirometer. In each treatment three replicates were set up and 45 fish in small size groups and 6 fish in large size groups were used. The OCRs increased with increasing water temperature in both size groups (p<0.001). Mean OCRs at 15, 20 and $25^{\circ}C$ were 414.2, 691.5 and $843.8mg\;O_2\;kg^{-1}h^{-1}$ in small size groups, and 182.0, 250.7 and $328.2mg\;O_2\;kg^{-1}h^{-1}$ in large size groups, respectively. The OCRs decreased with increasing body weights in three water temperature groups (p<0.001). The mass effect on metabolic rate can be expressed by the power of 0.69~0.75. The data are best described by the relationship: OCR=89.12+28.79T-1.17W. $Q_{10}$ values ranged 1.90~2.79 between 15 and $20^{\circ}C$, 1.49~1.71 between 20 and $25^{\circ}C$, and 1.80~2.03 over the full temperature range, respectively. The energy loss by metabolic cost increased with increasing water temperature and decreasing body weight (p<0.001). Mean energy loss rates by oxygen consumption at 15, 20 and $25^{\circ}C$ were 282.9, 472.3 and $576.3kJ\;kg^{-1}d^{-1}$ in small size groups and 124.3, 171.3 and $224.1kJ\;kg^{-1}d^{-1}$ in large size groups, respectively.

조피볼락의 사육 관리 및 생체역학 모델 결정을 위한 기초자료를 수집하기 위해 수온과 체중에 따른 산소 소비율 (oxygen consumption rate, OCR)을 조사하였다. 절식한 조피볼락 소형어 (습중량, $12.9{\pm}2.7g$, 135마리)와 대형어 ($351.1{\pm}9.2g$, 18마리)를 대상으로 세 가지 수온 (15, 20, $25^{\circ}C$)에 따라 유수식 형태의 호흡실을 이용하여 24시간 동안 5분 간격으로(3반복) 산소 소비율을 측정하였다. 수온과 체중 그리고 두 인자의 상호작용 모두가 조피볼락의 산소 소비율에 유의한 영향을 미쳤다 (p<0.001). 수온 상승에 따라 소형어와 대형어의 산소 소비율은 모두 유의적으로 증가하였다 (p<0.001). 15, 20 그리고 $25^{\circ}C$에서의 시간당 평균 산소 소비율은 소형어에서 각각 414.2, 691.5 그리고 $843.8mg\;O_2\;kg^{-1}h^{-1}$였으며, 대형어에서 각각 182.0, 250.7 그리고 $328.2mg\;O_2\;kg^{-1}h^{-1}$이었다. 실험 수온 조건에서 체중 증가에 따라 산소 소비율은 유의하게 감소하였으며 (p<0.001), 대사율에 미치는 체중의 영향은 0.69~0.75 범위의 지수였다. 조피볼락의 산소 소비율에 미치는 수온 (T)과 체중 (W)의 상관관계는 OCR=89.12+28.79T-1.17W로 나타났다. $Q_{10}$ 값은 $15{\sim}20^{\circ}C$, $20{\sim}25^{\circ}C$ 그리고 $15{\sim}25^{\circ}C$에서 소형어와 대형어는 각각 2.79와 1.90, 1.49와 1.71 그리고 2.03과 1.80이었다. 대사에 의한 에너지 손실은 수온 증가와 체중 감소에 따라 증가하였다(p<0.001). 15, 20 그리고 $25^{\circ}C$에서의 호흡 대사로 인한 일간 평균 에너지 손실은 소형어에서 각각 282.9, 472.3 그리고 $576.3kJ\;kg^{-1}d^{-1}$였으며, 대형어에서 각각 124.3, 171.3 그리고 $224.1kJ\;kg^{-1}d^{-1}$이었다.


Grant : 통영해역의 바다목장화 개발 연구

Supported by : 해양수산부


  1. Adams, S.M. and J.E. Breck. 1990. Bioenergetics. In: Schreck, C.B. and P.B. Moyle (eds.), Methods for Fish Biology. American Fisheries Society, Bethesda, MA, pp. 389-415
  2. Avnimelech, Y., N. Mozes and B. Weber. 1992. Effects of aeration and mixing on nitrogen and organic matter transformations in simulated fish ponds. Aquacul. Eng., 11 : 157-169 https://doi.org/10.1016/0144-8609(92)90002-F
  3. Bartell, S.M., J.E. Breck, R.H. Gardner and A.L. Brenket. 1986. Individual parameter perturbation and error analysis of fish bioenergetics models. Can. J. Fish. Aquat. Sci., 43 : 160-168 https://doi.org/10.1139/f86-018
  4. Beamish, F.W.H. 1964. Respiration of fishes with special emphasis on standard oxygen consumption. II. Influence of weight and temperature on respiration of several species. Can. J. Zool., 42 : 177-188 https://doi.org/10.1139/z64-016
  5. Brett, J. 1987. Environmental factors affecting growth. In: Hoare, W.H., D.J. Randall and S.R. Brett (eds.), Fish Physiology, vol. 8. Academic Press, pp. 252-259
  6. Brett, J.R. and T.D.D. Groves. 1979. Physiological energetics. In: Hoar, W.H., Randall, D.J. and Brett, J.R. (eds.), Bioenergetics and Growth. Fish Physiology. vol. 8. Academic Press, New York, pp. 279-352
  7. Bridges, C.R. 1988. Respiratory adaptations in intertidal fish. Am. Zool., 28 : 79-96 https://doi.org/10.1093/icb/28.1.79
  8. Cai, Y. and R.C. Summerfelt. 1992. Effects of temperature and size on oxygen consumption and ammonia excretion by walleye. Aquaculture, 104 : 127-138 https://doi.org/10.1016/0044-8486(92)90143-9
  9. Dabrowski, K.R. 1986. Active metabolism in larval and juvenile fish: ontogenetic changes, effect of water temperature and fasting. Fish Physiol. Biochem., 1 : 125- 144 https://doi.org/10.1007/BF02290254
  10. Degani, G., M.L. Gallagher and A. Meltzer. 1989. The influence of body size and temperature on oxygen consumption of the European eel, Anguilla anguilla. J. Fish Biol., 34 : 19-24 https://doi.org/10.1111/j.1095-8649.1989.tb02953.x
  11. DeSilva, C.D., S. Premawansa and C.N. Keembiyahetty. 1986. Oxygen consumption in Oreochromis niloticus (L.) in relation to development, salinity, temperature and time of day. J. Fish Biol., 29 : 267-277 https://doi.org/10.1111/j.1095-8649.1986.tb04944.x
  12. Elliot, J.M. and W. Davison. 1975. Energy equivalents of oxygen consumption in animal energetics. Oecologia, 19 : 195-201 https://doi.org/10.1007/BF00345305
  13. Fonds, M., R. Cronie, A.D. Vethaak and P. Van Der Puly. 1992. Metabolism, food consumption and growth of plaice (Pleuronectes platessa) and flounder (Platichthys flesus) in relation to fish size and temperature. Neth. J. Sea Res., 29 : 127-143 https://doi.org/10.1016/0077-7579(92)90014-6
  14. Fry, F.E.J. 1971. The effect of environmental factors on the physiology of fish. In: W.S. Hoar and D.J. Randall. (eds.), Fish Physiology. Academic Press, New York, pp. 1-98
  15. Jobling, M. 1982. A study of some factors affecting rates of oxygen consumption of plaice, Pleuronectes platessa L. J. Fish Biol., 20 : 501-516 https://doi.org/10.1111/j.1095-8649.1982.tb03951.x
  16. Kaushik, S.J. 1998. Nutritional bioenergetics and estimation of waste production in non-salmonids. Aqua. Liv. Res., 11 : 211-217 https://doi.org/10.1016/S0990-7440(98)89003-7
  17. Kim, C.H. and P. Chin. 1995. The effects of dietary energy /protein ratio on oxygen consumption, ammonia nitrogen excretion and body composition in juvenile rockfish, Sebastes schlegeli. J. Kor. Fish. Soc., 28 : 412- 420
  18. Kim, I.N., Y.J. Chang and J.Y. Kwon. 1995. The patterns of oxygen consumption in six species of marine fish. J. Kor. Fish. Soc., 28 : 373-381
  19. Lyytikainen, T. and M. Jobling. 1998. The effects of temperature fluctuations on oxygen consumption and ammonia excretion of underyearling Lake Inari Arctic charr. J. Fish Biol., 52 : 1186-1198
  20. Mitsunaga, Y., W. Sakamoto, N. Arai and A. Kasai. 1999. Estimation of the metabolic rate of wild red sea bream Pagrus major in different water temperatures. Nippon Suisan Gakk., 65 : 48-54 https://doi.org/10.2331/suisan.65.48
  21. Moore, J.M. and C.E. Boyd. 1984. Comparisons of devices for aerating inflow pipes. Aquaculture, 38 : 89-96 https://doi.org/10.1016/0044-8486(84)90141-8
  22. Oh, S.Y. and C.H. Noh. 2006. Effects of water temperature and photoperiod on the oxygen consumption rate of juvenile dark-banded rockfish, Sebastes inermis. J. Aquaculture, 19 : 210-215
  23. Okumus, I. and N. Bascinar. 2001. The effects of different numbers of feeding days on feed consumption and growth of rainbow trout Oncorhynchus mykiss (Walbaum). Aquacult. Res., 32 : 365-367 https://doi.org/10.1046/j.1365-2109.2001.00566.x
  24. Paul, A.J. 1986. Respiration of juvenile pollock, Theragra chalcogramma (Pallas), relative to body size and temperature. J. Exp. Mar. Biol. Ecol. 97 : 287-293 https://doi.org/10.1016/0022-0981(86)90246-7
  25. Paul, A.J., J.M. Paul and R.L. Smith. 1988. Respiratory energy growth requirements of the cod Gadus macrocephalus Tilesius relative to body size, food intake, and temperature. J. Exp. Mar. Biol. Ecol., 122 : 83-89 https://doi.org/10.1016/0022-0981(88)90213-4
  26. Peck, M.A., L.J. Buckley and D.A. Bengtson. 2005. Effects of temperature, body size and feeding on rates of metabolism in young-of-the-year haddock. J. Fish Biol., 66 : 911-923 https://doi.org/10.1111/j.0022-1112.2005.00633.x
  27. Spanopoulos-Hernandez, M., C.A. Martínez-Palacios, R.C. Vanegas-Perez, C. Rosas and L.G. Ross. 2005. The combined effects of salinity and temperature on the oxygen consumption of juvenile shrimps Litopenaeus stylirostris (Stimpson, 1874). Aquaculture, 244 : 341-348 https://doi.org/10.1016/j.aquaculture.2004.11.023
  28. Sveier, H. and E. Lied. 1998. The effects of feeding regime on growth, feed utilization and weight dispersion in large Atlantic salmon (Salmo salar) reared in seawater. Aquaculture, 165 : 333-345 https://doi.org/10.1016/S0044-8486(98)00269-5
  29. Tytler, P. and P. Calow. 1985. Fish Energetics: New Perspectives. Johns Hopkins University Press. Baltimore, MD. 349 p
  30. Wuenschel, M.J., A.R. Jugovich and J.A. Hare. 2005. Metabolic response of juvenile gray snapper (Lutjanus griseus) to temperature and salinity: Physiological cost of different environments. J. Exp. Mar. Biol. Ecol., 321 : 145-154 https://doi.org/10.1016/j.jembe.2005.01.009