DOI QR코드

DOI QR Code

Macrophage Activation by an Acidic Polysaccharide Isolated from Angelica Sinensis (Oliv.) Diels

  • Yang, Xingbin (Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University) ;
  • Zhao, Yan (Faculty of Pharmaceutical Sciences, Fourth Military Medical University) ;
  • Wang, Haifang (Faculty of Pharmaceutical Sciences, Fourth Military Medical University) ;
  • Mei, Qibing (Faculty of Pharmaceutical Sciences, Fourth Military Medical University)
  • Published : 2007.09.30

Abstract

This study was designed to identify and characterize the mechanism of macrophage activation by AAP, an acidic polysaccharide fraction isolated from the roots of Angelica sinensis (Oliv.) Diels. As a result, AAP significantly enhanced nitric oxide (NO) production and cellular lysosomal enzyme activity in murine peritoneal macrophages in vitro and in vivo. Furthermore, L-NAME, a specific inhibitor of inducible nitric oxide synthase (iNOS), effectively suppressed AAP-induced NO generation in macrophages, indicating that AAP stimulated macrophages to produce NO through the induction of iNOS gene expression and the result was further confirmed by the experiment of the increase of AAP-induced iNOS transcription in a dose-dependent manner. To further investigate, AAP was shown to strongly augment toll-like receptor 4 (TLR4) mRNA expression and the pretreatment of macrophages with anti-TLR4 antibody significantly blocked AAP-induced NO release and the increase of iNOS activity, and tumor necrosis factor-$\alpha$ (TNF-$\alpha$) secretion.

Keywords

References

  1. Alderton, W. K., Cooper, C. E. and Knowles, R. G. (2001) Nitric oxide synthase: structure function and inhibition. Biochem. J., 357, 593-615. https://doi.org/10.1042/0264-6021:3570593
  2. Ando. I., Tsukumo, Y., Wakabayashi, T., Akashi, S., Miyake, K., Kataoka, T. and Nagai, K. (2002) Safflower polysaccharides activate the transcription factor NF-kappa B via Toll-like receptor 4 and induce cytokine production by macrophages. Int. Immunopharmacol. 2, 1155-1162. https://doi.org/10.1016/S1567-5769(02)00076-0
  3. Beutler, B., Hoebe, K., Du, X. and Ulevitch, R. J. (2003) How we detect microbes and respond to them: the Toll-like receptors and their transducers. J. Leukocyte Biol. 74, 479-485. https://doi.org/10.1189/jlb.0203082
  4. Cho, C. H., Mei, Q. B., Shang, P., Lee, S. S., So, H. L., Guo, X. and Li, Y. (2000) Study of the gastrointestinal protective effects of polysaccharides from Angelica sinensis in rats. Planta Medica 66, 348-351. https://doi.org/10.1055/s-2000-8552
  5. Ferrari, M., Fornasiero, M. C. and Isetta, A. M. (1990) MTT colorimetric assay for testing macrophage cytotoxic activity in vitro. J. Immunol. Methods 131, 165-172. https://doi.org/10.1016/0022-1759(90)90187-Z
  6. Franchini, M., Schweizer, M., Mtzener, P., Magkouras, I., Sauter, K. S., Mirkovitch, J., Peterhans, E. and Jungi, T. W. (2006) Evidence for dissociation of TLR mRNA expression and TLR agonist-mediated functions in bovine macrophages. Vet. Immunol. Immunopathol. 110, 37-49. https://doi.org/10.1016/j.vetimm.2005.09.002
  7. Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S. and Tannenbaum, S. R. (1982) Analysis of nitrate in biological fluids. Anal. Biochem. 126, 131-138. https://doi.org/10.1016/0003-2697(82)90118-X
  8. Han, S. B., Park, S. K., Ahn, H. J., Yoon, Y. D., Kim, Y. H., Lee, J. J., Lee, K. H., Moon, J. S., Kim, H. C. and Kim, H. M. (2003a) Characterization of B cell membrane receptors of polysaccharide isolated from the root of Acanthopanax koreanum. Int. Immunopharmacol. 3, 683-691. https://doi.org/10.1016/S1567-5769(03)00056-0
  9. Han, S. B., Yoon, Y. D., Ahn, H. J., Lee, H. S., Lee, C. W., Yoon, W. K., Park, S. K. and Kim, H. M. (2003b) Toll-like receptormediated activation of B cells and macrophages by polysaccharide isolated from cell culture of Acanthopanax senticosus. Int. Immunopharmacol. 3, 1301-1312. https://doi.org/10.1016/S1567-5769(03)00118-8
  10. Jeon, Y. J., Han, S. B., Ahn, K. S. and Kim, H. M. (1999) Activation of NFkappaB/Rel in angelan-stimulated macrophages. Int. Immunopharmacol. 43, 1-9. https://doi.org/10.1016/S0162-3109(99)00032-6
  11. Jeong, S. C., Jeong, Y. T., Yang, B. K. and Song, C. H. (2006) Chemical characteristics and immuno-stimulating properties of biopolymers extracted from Acanthopanax sessiliflorus. J. Biochem. Mol. Biol. 39, 84-90. https://doi.org/10.5483/BMBRep.2006.39.1.084
  12. Kim, G. Y., Choi, G. S., Lee, S. H. and Park, Y. M. (2004) Acidic polysaccharide isolated from Phellinus linteus enhances through the up-regulation of nitric oxide and tumor necrosis factor-a from peritoneal macrophages. J. Ethnopharmacol. 95, 69-76. https://doi.org/10.1016/j.jep.2004.06.024
  13. Komatsu, W., Yagasaki, K., Miura, Y. and Funabiki, R. (1997) Stimulation of tumor necrosis factor and interleukin-1 productivity by the oral administration of cabbage juice to rats. Biosci. Biotechnol. Biochem. 61, 1937-1938. https://doi.org/10.1271/bbb.61.1937
  14. Lee, K. Y. and Jeon, Y. J. (2003) Polysaccharide isolated from Poria cocos sclerotium induces NF-kappaB/rel activation and iNOS expression in murine macrophages. Int. Immunopharmacol. 3, 1353-1362. https://doi.org/10.1016/S1567-5769(03)00113-9
  15. Lee, K. Y. and Jeon, Y. J. (2005) Macrophage activation by polysaccharide isolated from Astragalus membranaceus. Int. Immunopharmacol. 5, 1225-1233. https://doi.org/10.1016/j.intimp.2005.02.020
  16. MacMicking, J., Xie, Q. W. and Nathan, C. (1997) Nitric oxide and macrophage function. Annu. Rev. Immunol. 15, 323-350. https://doi.org/10.1146/annurev.immunol.15.1.323
  17. Mei, Q. B., Tao, J. Y., Zhang, H. D., Duan, Z. X. and Chen, Y. Z. (1988) Effects of Angelica sinensis polysaccharides on hemopoietic stem cells in irradiated mice. Acta Pharmacol. Sin. 9, 279-282.
  18. Morrison, D. C. and Jacobs, D. M. (1976) Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochemistry 13, 813-818. https://doi.org/10.1016/0019-2791(76)90181-6
  19. Rojas, A., Padron, J., Caveda, L., Palacios, M. and Moncada, S. (1993) Role of nitric oxide pathway in the protection against lethal endotoxemia by low dose of lipopolysaccharides. Biochem. Biophys. Res. Commun. 191, 441-446. https://doi.org/10.1006/bbrc.1993.1237
  20. Senel, S. and McClure, S. J. (2004) Potential applications of chitosan in veterinary medicine. Adv. Drug Deliv. Rev. 56, 1467-1480. https://doi.org/10.1016/j.addr.2004.02.007
  21. Shang, P., Qian, A. R., Yang, T. H., Jia, M., Mei, Q. B., Cho, C. H., Zhao, W. M. and Chen, Z. N. (2003) Experimental study of anti-tumor effects of polysaccharides from Angelica sinensis. World J. Gastroenterol. 9, 1963-1967. https://doi.org/10.3748/wjg.v9.i9.1963
  22. Suzuki, I., Tanaka, H., Kinoshita, A., Oikawa, S., Osawa, M. and Yadomae, T. (1990) Effect of orally administered beta-glucan on macrophage function in mice. Int. Immunopharmacol. 12, 675-684. https://doi.org/10.1016/0192-0561(90)90105-V
  23. Tzianabos, A. O. (2000) Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin. Microbiol. Rev. 13, 523-533. https://doi.org/10.1128/CMR.13.4.523-533.2000
  24. Werling, D. and Jungi, T. W. (2003) Toll-like receptors linking innate and adaptive immune response. Vet. Immunol. Immunopathol. 91, 1-12. https://doi.org/10.1016/S0165-2427(02)00228-3
  25. Xie, Q. W., Cho, H. J., Calaycay, J., Mumford, R. A., Swiderek, K. M., Lee, T. D., Ding, A., Troso, T. and Nathan, C. (1992) Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256, 225-228. https://doi.org/10.1126/science.1373522
  26. Yang, X. B., Zhao, Y., Wang, Q. W., Wang, H. F. and Mei, Q. B. (2005) Analysis of the monosaccharide components of Angelica polysaccharides by high performance liquid chromatography. Anal. Sci. 21, 1177-1180. https://doi.org/10.2116/analsci.21.1177
  27. Ye, Y. N., Koo, M. W., Li, Y., Matsui, H. and Cho, C. H. (2001b) Angelica sinensis modulates migration and proliferation of gastric epithelial cells. Life Sci. 68, 961-968. https://doi.org/10.1016/S0024-3205(00)00994-2
  28. Ye, Y. N., Liu, E. S., Li, Y., So, H. L., Cho, C. C., Sheng, H. P., Lee, S. S. and Cho, C. H. (2001c) Protective effect of polysaccharides-enriched fraction from Angelica sinensis on hepatic injury. Life Sci. 69, 637-646. https://doi.org/10.1016/S0024-3205(01)01153-5
  29. Ye, Y. N., Liu, E. S., Shin, V. Y., Koo, M. W., Li, Y., Wei, E. Q., Matsui, H. and Cho, C. H. (2001a) A mechanistic study of proliferation induced by Angelica sinensis in a normal gastric epithelial cell line. Biochem. Pharmacol. 61, 1439-1448. https://doi.org/10.1016/S0006-2952(01)00625-6
  30. Ye, Y. N., So, H. L., Liu, E. S., Shin, V. Y. and Cho, C. H. (2003) Effect of polysaccharides from Angelica sinensis on gastric ulcer healing. Life Sci. 72, 925-932. https://doi.org/10.1016/S0024-3205(02)02332-9

Cited by

  1. Non-targeted metabolite fingerprinting of oriental folk medicine Angelica acutiloba roots by ultra performance liquid chromatography time-of-flight mass spectrometry vol.32, pp.13, 2009, https://doi.org/10.1002/jssc.200900121
  2. Characterisation of antioxidant and antiproliferative acidic polysaccharides from Chinese wolfberry fruits vol.133, pp.3, 2012, https://doi.org/10.1016/j.foodchem.2012.02.018
  3. Isolation, structure and bioactivities of the polysaccharides from Angelica sinensis (Oliv.) Diels: A review vol.89, pp.3, 2012, https://doi.org/10.1016/j.carbpol.2012.04.049
  4. Angelica sinensisreduced Aβ-induced memory impairment in rats vol.24, pp.4, 2016, https://doi.org/10.3109/1061186X.2015.1077848
  5. Toll-like receptor 4-related immunostimulatory polysaccharides: Primary structure, activity relationships, and possible interaction models vol.149, 2016, https://doi.org/10.1016/j.carbpol.2016.04.097
  6. Pectic Polysaccharides Isolated from Malian Medicinal Plants Protect againstStreptococcus pneumoniaein a Mouse Pneumococcal Infection Model vol.77, pp.5, 2013, https://doi.org/10.1111/sji.12047
  7. Bioactivities of major constituents isolated from Angelica sinensis (Danggui) vol.6, pp.1, 2011, https://doi.org/10.1186/1749-8546-6-29
  8. Structural characterization of a pectic polysaccharide from Nerium indicum flowers vol.71, pp.11-12, 2010, https://doi.org/10.1016/j.phytochem.2010.05.019
  9. Storage xyloglucans: Potent macrophages activators vol.189, pp.1-2, 2011, https://doi.org/10.1016/j.cbi.2010.09.024
  10. Isolation of phosphorylated polysaccharides from algae: the immunostimulatory principle of Chlorella pyrenoidosa vol.345, pp.9, 2010, https://doi.org/10.1016/j.carres.2010.04.004
  11. Hematopoietic and myeloprotective activities of an acidic Angelica sinensis polysaccharide on human CD34+ stem cells vol.139, pp.3, 2012, https://doi.org/10.1016/j.jep.2011.11.049
  12. A comparison of bioactive aqueous extracts and polysaccharide fractions from roots of wild and cultivated Cochlospermum tinctorium A. Rich vol.93, 2013, https://doi.org/10.1016/j.phytochem.2013.03.012
  13. Plant-Based Modulation of Toll-like Receptors: An Emerging Therapeutic Model 2013, https://doi.org/10.1002/ptr.4886
  14. Characterizations and anti-tumor activities of three acidic polysaccharides from Angelica sinensis (Oliv.) Diels vol.46, pp.1, 2010, https://doi.org/10.1016/j.ijbiomac.2009.11.005
  15. Structural characterization and immunomodulatory effect of a polysaccharide HCP-2 from Houttuynia cordata vol.103, 2014, https://doi.org/10.1016/j.carbpol.2013.12.048
  16. Development of a Cross-Linked Polysaccharide ofLigusticum wallichii– Squid Skin Collagen Scaffold Fabrication and Property Studies for Tissue-Engineering Applications vol.63, pp.2, 2014, https://doi.org/10.1080/00914037.2013.769249
  17. TLRs as pharmacological targets for plant-derived compounds in infectious and inflammatory diseases vol.11, pp.10, 2011, https://doi.org/10.1016/j.intimp.2011.04.027
  18. A Study of the Wound Healing Mechanism of a Traditional Chinese Medicine,Angelica sinensis, Using a Proteomic Approach vol.2012, 2012, https://doi.org/10.1155/2012/467531
  19. Advances on Bioactive Polysaccharides from Medicinal Plants vol.56, pp.sup1, 2016, https://doi.org/10.1080/10408398.2015.1069255
  20. Pyrolysis GC-MS-based metabolite fingerprinting for quality evaluation of commercial Angelica acutiloba roots vol.109, pp.1, 2010, https://doi.org/10.1016/j.jbiosc.2009.06.025
  21. Chemical and biological characterization of polysaccharides from wild and cultivated roots of Vernonia kotschyana vol.139, pp.2, 2012, https://doi.org/10.1016/j.jep.2011.10.044
  22. Escherichia coli infection induces mucosal damage and expression of proteins promoting urinary stone formation vol.41, pp.4, 2013, https://doi.org/10.1007/s00240-013-0577-4
  23. Pectic polysaccharide from immature onion stick (Allium cepa): Structural and immunological investigation vol.92, pp.1, 2013, https://doi.org/10.1016/j.carbpol.2012.09.013
  24. Asymmetric synthesis of aza-diospongin A as an iNOS inducer vol.20, pp.19, 2009, https://doi.org/10.1016/j.tetasy.2009.09.013
  25. Purification of innate immunostimulant from green tea using a silkworm muscle contraction assay vol.5, pp.1, 2011, https://doi.org/10.5582/ddt.v5.1.18