DOI QR코드

DOI QR Code

Nitrogen-15 Determination in Tissues of Laying Hens Fed on Different Levels of $^{15}N-Chlorocholine$ Chloride ($^{15}N-CCC$) Diets

  • Nurhayati, Nurhayati (Institute of Animal Physiology and Animal Nutrition, Georg-August University of Goettingen) ;
  • Thinggaard, Grete (Institute of Animal Physiology and Animal Nutrition, Georg-August University of Goettingen) ;
  • Chakeredza, S. (Institute of Animal Physiology and Animal Nutrition, Georg-August University of Goettingen) ;
  • Reineking, A. (Forest Ecosystems Research Centre Competence Centre "Stable Isotopes" University Goettingen) ;
  • Langel, R. (Forest Ecosystems Research Centre Competence Centre "Stable Isotopes" University Goettingen) ;
  • ter Meulen, U. (Institute of Animal Physiology and Animal Nutrition, Georg-August University of Goettingen)
  • Received : 2006.02.27
  • Accepted : 2006.05.30
  • Published : 2007.03.01

Abstract

An experiment was conducted to determine the distribution of nitrogen-15 in tissues of laying hens receiving different levels of $^{15}N$-CCC in diets. Twenty brown laying hens were divided into four groups and randomly assigned into one of four dietary treatment groups consisting of 0, 5, 50 and 100 ppm $^{15}N$-CCC inclusion. The hens were individually fed with the $^{15}N$-CCC diets in battery cages for 11 days and then all hens restored to feeding on the control diet for 7 days. After eleven days, eight hens were slaughtered, and the others were slaughtered seven days after $^{15}N$-CCC diets withdrawal. Samples of blood, liver, heart and meat were collected and their $^{15}N$ contents were determined. The ${\delta}^{15}N$ excess (${\delta}^{15}N$-ex) and atom percentage excess in $^{15}N$ were calculated. The ${\delta}^{15}N$-ex and atom percentage excess $^{15}N$ increased significantly (p<0.05) with increasing levels of $^{15}N$-CCC in diets in all tissues after feeding $^{15}N$-CCC diets for eleven days. The highest concentration of ${\delta}^{15}N$-ex and atom percentage excess $^{15}N$ were detected in blood, followed in order by liver, heart and thigh meat. The concentrations reduced significantly (p<0.05) after $^{15}N$-CCC diets were withdrawn. Comparison between treatment groups showed that ${\delta}^{15}N$-ex and atom percentage excess $^{15}N$ were still higher in hens that had been fed diets with higher levels of $^{15}N$-CCC. This study showed that nitrogen-15 was distributed in blood, liver, heart and meat of laying hens.

Keywords

References

  1. Ackermann, H., J. Proll and W. Luder. 1970. Untersuchungen zur toxikologischen Beurteilung von chlorcholinchlorid. 1. Mitteilung : $Einflu{\ss}$ von Chlorcholinchlorid auf Wachstum, Futterverwertung, Organveranderungen und Nachkommenschaft. Arch. Exp. Veterinar-med. 24(4):1049-1059.
  2. Azem, E. 1996. Ausscheidung und intermediare Verteilung von $^{15}N-markiertem$ Chlorcholinchlorid bei Schweinen nach einmaliger oraler Applikation. Doctoral Dissertation. Faculty of Agricultural Science. Georg-August University of Goettingen. p. 119.
  3. Baker, E. A., A. L. Hayes and R. C. Butler. 1992. Physicochemical properties of agrochemicals: Their effects on foliar penetration. Pestic. Sci. 34:167-182. https://doi.org/10.1002/ps.2780340212
  4. Bier, H. and H. Ackermann. 1970. Lokalisierung und Anreicherung von Chlorcholinchlorid der Ratten nach peroraler Applikation. Arch. Exp. Vet. Med. 24:1023-026.
  5. Blinn, R. C. 1967. Biochemical behaviour in 2-chloroethyl trimethylammonium chloride in wheat and in rats. J. Agric. Food. Chem. 15;984-988. https://doi.org/10.1021/jf60154a003
  6. Bohring, J. 1982. Die Persistenz von Chlorcholinchlorid in Weizenpflanzen während der generativen Wachstumsphase und in lagernden Weizenkornern. Z. Pflanzenernähr. Dungg. Bodenkde. 145:278-287. https://doi.org/10.1002/jpln.19821450308
  7. Calsamiglia, S., M. D. Stern and J. L. Firkins. 1996. Comparison of nitrogen-15 and purine as microbial markers in continuous culture. J. Anim. Sci. 74;1375-1381. https://doi.org/10.2527/1996.7461375x
  8. Coffman, J. R., G. W. Beran, H. R. Colten, C. Greig, J. Halloran, D. Hayes, J. B. Kaneene, K. McNutt, D. Meeker, S. C. Nickerson, T. Seay and R. G. Stewart. 1999. The use of drugs in food animals: Benefits and risks. National Academy Press, Washington DC. pp. 115-119.
  9. Dekhuijzen, H. M. and C. R. Vonk. 1974. The distribution and degradation of chlormequat in wheat plants. Pest. Biochem. Physiol. 4:346-355. https://doi.org/10.1016/0048-3575(74)90117-5
  10. Dekhuijzen, H. M. and K. B. A. Bodlaender. 1973. Distribution and persistence of chlormequat in potatoes plants. Pestic. Sci. 4:619-627. https://doi.org/10.1002/ps.2780040502
  11. Donoghue, D. J., H. Hairston, M. Henderson, M. Mcdonald, S. Gaines and A. M. Donoghue. 1997. Modelling drug residue uptake by eggs: Yolks contain ampicillin residues even after drug withdrawal and non detectability in the plasma. Poultry Sci. 76:458-462. https://doi.org/10.1093/ps/76.3.458
  12. Elkin, R. G. and C. R. Thomas. 2000. Distribution of radioactivity in eggs, tissues and excreta of laying hens following a single oral dose of [^{14}C$]atorvastatin. Poult. Sci. 79 (Suppl. 1):80-81. https://doi.org/10.1093/ps/79.1.80
  13. Etches, R. J. 1996. Reproduction in poultry. CAB International, Wallingford, UK. p. 318.
  14. Furusawa, N. and K. Kishida. 2002. Transfer and distribution profiles of dietary sulphonamides in the tissues of the laying hen. Food Addit Contam. 19(4):368 -372. https://doi.org/10.1080/02652030110087465
  15. Hartmann, C. 2001. Selection for yolk production in laying hens. Doctoral Thesis. Swedish University of Agricultural Sciences, Uppsala. 30 p and 5 publications
  16. Hennighausen, G. and B. Tiefenbach. 1974. Toxicological and pharmacological properties of chlorocholine chloride. Proc. Eur. Soc. Toxicol. (Dev. Genet. Aspects Drug Envirom. Toxicol., Proc. Meet. 1974) 16:300-302
  17. Lampeter, W. and H. Bier. 1970. Ausscheidung von Chlorcholinchlorid über Milch und Harn nach oraler Applikation von 1 g $^{15}N-markiertem$ Chlorcholinchlorid an eine laktierende Kuh. Arch. Exper. Vet. Med., 24:1027-1031.
  18. Landazuri, J. C., U. ter Meulen, E .A. El Harith and K. D. Gunther. 1993. Distribution and excretion of $^{15}N-chlorcholinchloride$ by laying hens. J. Anim. Physiol. Anim. Nutr. 69:211-216. https://doi.org/10.1111/j.1439-0396.1993.tb00807.x
  19. Lim, K.S., S.J. You, B.K. An and C.W. Kang. 2006. Effects of dietary garlic powder and copper on cholesterol content and quality characteristics of chicken eggs. Asian-Aust. J. Anim. Sci. 19:582-586. https://doi.org/10.5713/ajas.2006.582
  20. Mariotti, A. 1983. Atmospheric nitrogen as a reliable standard for natural $^{15}N$ abundance measurements. Nature 303:685-687. https://doi.org/10.1038/303685a0
  21. Meidina, R. and H. L. Schmidt. 1982. Nitrogen isotope ratio variations in biological materials, indicator for metabolic correlations. In: (H. L. Schmidt, H. Förstel and K. Heinzinger). Stable isotopes. Proceeding of the 4th International Conference, Julich, March 23-36, 1981. Analytical Chemistry Symposia Series 11:465-473
  22. Mooney, R. P. and N. R. Pasarela. 1967. Determination of chlorocholine chloride residues in wheat grain, straw and green wheat foliage. J. Agric. Food Chem. 15:989-995. https://doi.org/10.1021/jf60154a004
  23. Prelusky, D. B., R. M. G. Hamilton and H. L. Trenholm. 1989. Transmission of residues to eggs following long-term administration of $^{14}C-labelled$ deoxynivalenol to laying hens. Poult. Sci. 68:744-748. https://doi.org/10.3382/ps.0680744
  24. Reineking, A., R. Langel and J. Schikowski. 1993. $^{15}N$, $^{13}C-online$ measurements with an elemental analyser (Carlo Erba, NA 1500), a modified trapping box and a gas isotope mass spectrometer (Finnigan, Mat 251). Isotopenpraxis Environ. Health Stud. 29:169-174. https://doi.org/10.1080/10256019308046151
  25. Romanowski, H. 1972. Analytische Untersuchungen an CCC und sein Verhalten in verschidenen Medien und einigen Bodenarten. Die Nahrung, 16(1):56 https://doi.org/10.1002/food.19720160122
  26. Songsang, A., S. Chakeredza, G. Thinggaard, T. Vearasilp and U. ter Meulen. 2002. Distribution of $^{15}N-Chlorocholine$ chloride in eggs of laying hens. J. Anim. Physiol. Anim. Nutri. 86:129-136. https://doi.org/10.1046/j.1439-0396.2002.00344.x
  27. Steel, R. G. D. and J. H. Torrie. 1981. Principle and procedures of statistics a biometrical approach. 2nd Ed. McGraw-Hill book company, Singapore.
  28. Uberschär, K. H. 1993. Residues in eggs-A review. Quality of poultry products. 5th European Symposium on the quality of eggs and egg products in tours. France 4-8 Oct. 1993. p. 363-371.
  29. Waterlow, J. C. 1981. $^{15}N$ end-product methods for the study of whole body protein turnover. Proceed. Nutr. Soc. 40:317-320. https://doi.org/10.1079/PNS19810047
  30. Wu, C. P., S. M. Tsay, P. W. S. Chiou and K. L. Chen. 2006. Recovery over time of production performance and biological functions of laying hens after withdrawal toxic levels of dietary roxarsone. Asian-Aust. J. Anim. Sci. 19:48-54.
  31. Yang, Y. X., Y. J. Kim, Z. Jin, J. D. Lohakare, C. H. Kim, S. H. Ohh, S. H. Lee, Y. J. Choi and B. J. Chae. 2006. Effects of dietary supplementation of astaxanthin on production performance, egg quality in layers and meat quality in finishing pigs. Asian-Aust. J. Anim. Sci. 19:1019-1025. https://doi.org/10.5713/ajas.2006.1019