Synthesis of Pure Brookite-type TiO2 Nanoparticles from Aqueous TiCl4 Solution with controlled Acidity by Precipitation Method

침전법으로 TiCl4 수용액의 산농도 조절을 통한 나노크기의 순수한 브루카이트상 이산화티타늄 분말 제조

  • 이정훈 (우석대학교 화학공학과) ;
  • 양영석 (우석대학교 제약공학과)
  • Received : 2007.04.17
  • Accepted : 2007.09.27
  • Published : 2007.12.10

Abstract

HCl concentration, reaction temperature, and $Ti^{4+}$ concentration are the decisive factors in determining the structure of precipitates in the process of synthesis of $TiO_2$ particles from aqueous $TiCl_4$ solution by precipitation and the volumetric proportion of brookite phase in $TiO_2$ particles can be controlled by these factors. Pure brookite-type $TiO_2$ nanoparticles were synthesized by heating the aqueous $TiCl_4$ solution with no more than 1.0 M of $Ti^{4+}$, in which the concentration of HCl was kept in the range of about 2.53~6.41 M during reaction, at the temperature below $70^{\circ}C$ for 20 h. Also, Pure brookite was finally transformed to a rutile phase via an anatase phase through heat-treatment.

$TiCl_4$ 수용액의 침전반응으로 $TiO_2$를 제조할 때 침전용액의 염산농도와 반응온도 및 $Ti^{4+}$농도는 $TiO_2$ 침전물의 결정구조를 결정하는 중요한 인자이며, 이들의 조절을 통하여 브루카이트상의 부피분율 제어가 가능하다. 순수한 브루카이트상 이산화티타늄을 제조하기 위해서는 $Ti^{4+}$농도를 1.0 M 이하로 유지하고, 침전용액의 염산농도를 2.53~6.41 M이 되도록 조절한후 $70^{\circ}C$ 이하에서 20 h 침전반응 시켜야 한다. 한편, 순수한 브루카이트상 분말을 열처리한 결과 브루카이트상은 열처리 온도의 증가에 따라 아나타제상으로 상전이 된 후 최종적으로 루틸상으로 상변화가 진행되었다.

Keywords

References

  1. S. H. Han, Y. H. Yun, S. H. Lee, and S. H. Choi, J. Korean Cera. Soc., 36, 691 (1999)
  2. H. T. Jun, Y. K. Choi, and B. H. Kim, J. Cera. Soc., 36, 1163 (1999)
  3. H. D. Nam, B. H. Lee, S. J. Kim, C. H. Jung, J. H. Lee, and S. Park, Jap. J. Appl. Phy., 37, 4603 (1998) https://doi.org/10.1143/JJAP.37.998
  4. S. J. Kim, S. D. Park, and Y. H. Jeong, J. Am. Cera. Soc., 82, 927 (1999)
  5. Y. Zheng, E. Shi, S Chi, W. Li, and X. Hu, J. Mater. Sci. Lett., 19, 1445 (2000) https://doi.org/10.1023/A:1011010306699
  6. Q. Zhang, L. Gao, and J. Guo, J. Euro. Cera. Soc., 20, 2153 (2000) https://doi.org/10.1016/S0955-2219(00)00085-6
  7. J. Yang, S. Mei, and J. M. Ferreira, J. Am. Cera. Soc., 83, 1361 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01394.x
  8. Y. Hu, H. L. Tsai, and C. L. Huang, J. Euro. Cera. Soc., 23, 691 (2003) https://doi.org/10.1016/S0955-2219(02)00194-2
  9. H. Cheng, J. Ma, and Z. Zhao, L. Qi, Chem. Mater. 7, 663 (1995) https://doi.org/10.1021/cm00053a028
  10. A. Pottier, C. Chaneac, E. Tronc, L. Mazerolles, and J. Jolivet, J. Mater. Chem., 11, 1116 (2001) https://doi.org/10.1039/b100435m
  11. H. Kominami, M. Kohno, and Y. Kera, J. Mater. Chem., 10, 1151 (2000) https://doi.org/10.1039/a908528i
  12. J. H. Lee and Y. S. Yang, Korean J. Mater. Res., 12 (2002)
  13. J. H. Lee and Y. S. Yang, J. Korean Ind. Eng. Chem., 14, 103 (2003)
  14. J. H. Lee and Y. S. Yang, J. Korean Ind. Eng. Chem., 14, 224 (2003)
  15. J. H. Lee and Y. S. Yang, Appl. Chem., 7, 499 (2003)
  16. J. H. Lee and Y. S. Yang, J. Euro. Cera. Soc., 25, 3573 (2005)
  17. J. H. Lee and Y. S. Yang, J. Mater. Sci. Lett., 40, 2843 (2006)
  18. J. H. Lee and Y. S. Yang, Materials Chem, and Phys., 93, 237, (2005) https://doi.org/10.1016/j.matchemphys.2005.03.020
  19. J. H. Lee and Y. S. Yang, J. Korean Ind. Eng. Chem., 16, 785 (2006)
  20. J. H. Lee and Y. S. Yang, J. Mater. Sci., 41, 557 (2005) https://doi.org/10.1007/s11003-006-0015-7
  21. J. H. Lee and Y. S. Yang, Appl. Chem., 6, 667 (2002)
  22. X. Ye, J sha, Z. Jiao, and L. Zhang, Nanostructure Materials., 8, 919 (1997) https://doi.org/10.1016/S0965-9773(98)00037-3
  23. Y. Zheng, E. Shi, Z. Chen, W. Li, and X. Hu, J. Mater. Chem., 11, 1547 (2001) https://doi.org/10.1039/b009203g
  24. Y. Zheng, E. Shi, S. Chen, W. Li, and X. Hu, J. Am. Cera. Soc., 83, 2634 (2000)
  25. R. C. Bhave and B. I. Lee, Materials Science and Engineering: A., In Press Manuscript, 1 March (2007)
  26. B. I. Lee, X. Wang, R. C. Bhave, and M. Hu, Materials Lett., 60, 1179 (2006) https://doi.org/10.1016/j.matlet.2005.10.114
  27. S. Cassaignon, M. Koelsch, and J. P. Jolivet, J. Physics and Chemistry of Solids., In Press Corrected Proof, 22 February (2007)
  28. G. A. Tompsett, G. A. Bowmaker, R. P. Cooney, J. B. Metson, K. A. Rodgers, and J. M. Seakins, J. Raman spectroscopy., 26, 50 (1995)
  29. C. C. Wang and J. Y. Ying, Chem. Mater., 11, 3113 (1999)
  30. H. Z. Zhang and J. F. Banfild, J. Mater. Chem., 8, 2073 (1998)
  31. A. A. Girbb and J. F. Banfild, Am. Mineral., 82, 717 (1997)
  32. Y. Hwu, Y. D. Yao, N. F. Cheng, C. Y. Tung, and H. M. Lin, Nanostructure Materials., 9, 355 (1997)
  33. Y. Zhang and J. F. Banfild, Materials Chem and Phys: B., 104, 3841 (2000)
  34. W. Lin, A. Chen, J. Lin, Z. Dai, W. Qiu, and M. M. Zhu, J. Am. Ceram. Soc., 88, 168 (2005) https://doi.org/10.1111/j.1551-2916.2004.00036.x
  35. J. C. Jamison and B. Olinger, Am. Mineral., 54, 1477 (1969)
  36. P. R. J. P. Arnal, D. Corriu, P. Leclercq, H. Mutin, and A. Vioux, J. Mater. Chem., 6, 1925 (1996)