다양한 산화반응을 조합한 고급산화공정의 아세트산 분해에 관한 연구

Destruction of Acetic Acid Using Various Combinations of Oxidants by an Advanced Oxidation Processes

  • 권태옥 (국립 순천대학교 공과대학 화학공학과) ;
  • 박보배 (국립 순천대학교 공과대학 화학공학과) ;
  • 문장수 (한국환경기술진흥원) ;
  • 문일식 (국립 순천대학교 공과대학 화학공학과)
  • Kwon, Tae Ouk (Department of Chemical Engineering, Sunchon National University) ;
  • Park, Bo Bae (Department of Chemical Engineering, Sunchon National University) ;
  • Moon, Jang Soo (Korea Institute of Environmental Science and Technology) ;
  • Moon, Il Shik (Department of Chemical Engineering, Sunchon National University)
  • 투고 : 2006.12.26
  • 심사 : 2007.05.17
  • 발행 : 2007.08.10

초록

UV, $O_3$, $H_2O_2$, $Fe^{2+}$ 등의 산화반응을 조합한 고급산화 공정(advanced oxidation process)을 이용하여 아세트산 분해실험을 수행하였다. 적용된 고급산화 공정은 $UV/H_2O_2$, $UV/H_2O_2/Fe^{2+}$, $O_3$, $O_3/H_2O_2$, $UV/O_3/H_2O_2$$UV/O_3/H_2O_2/Fe^{2+}$ 공정이었다. 낮은 pH (3.5)에서의 아세트산 분해율은 $UV/H_2O_2/Fe^{2+}$, $O_3/H_2O_2$, $UV/O_3/H_2O_2$$UV/O_3/H_2O_2/Fe^{2+}$ 공정은 비교적 높고, $UV/H_2O_2$$O_3$ 공정은 20% 이하로 낮게 나타났다. $O_3/H_2O_2$, $UV/O_3/H_2O_2$ 공정의 아세트산 분해율은 반응시간 180 min까지 반응시간에 따라 지속적으로 증가하였으나 $UV/H_2O_2/Fe^{2+}$, $UV/O_3/H_2O_2/Fe^{2+}$ 공정에서는 반응시간 90 min까지 아세트산 분해율이 급격히 증가한 후 그 이후에는 분해율의 증가가 미미하였다. 고급산화 공정별 아세트산 분해율은$UV/H_2O_2/Fe^{2+}$ 공정은 55%, $O_3/H_2O_2$ 공정 및 $UV/O_3/H_2O_2$ 공정은 66%, $UV/O_3/H_2O_2/Fe^{2+}$ 공정은 64%이었다.

The destruction of synthetic acetic acid wastewater was carried out using UV, $O_3$, $H_2O_2$, $Fe^{2+}$ oxidants in various combinations by the advanced oxidation processes. $UV/H_2O_2$, $UV/H_2O_2/Fe^{2+}$, $O_3$, $O_3/H_2O_2$, $UV/O_3/H_2O_2$, $UV/O_3/H_2O_2/Fe^{2+}$ processes were tested. $UV/H_2O_2/Fe^{2+}$, $O_3/H_2O_2$, $UV/O_3/H_2O_2$, $UV/O_3/H_2O_2/Fe^{2+}$ processes shows the most effective destruction efficiency at low pH (3.5) condition of wastewater, but $UV/H_2O_2$ and $O_3$ processes were observed less than 20%. Destruction efficiency was gradually increased with the reaction time in the $O_3/H_2O_2$ and $UV/O_3/H_2O_2$ processes, in case of the $UV/H_2O_2/Fe^{2+}$ and $UV/O_3/H_2O_2/Fe^{2+}$ processes shows rapid increasing of destruction efficiency within 90 min, then slightly decreasing with time. The destruction efficiencies of $UV/H_2O_2/Fe^{2+}$, $O_3/H_2O_2$, $UV/O_3/H_2O_2$ and $UV/O_3/H_2O_2/Fe^{2+}$ processes were observed 55, 66, 66 and 64%, respectively.

키워드

과제정보

연구 과제 주관 기관 : 한국산업기술재단

참고문헌

  1. S. Findik, G. Gunduz, Ultrasonics, 14, 157 (2007)
  2. C. Zerva, Z. Peschos, S. G. Poulopoulos, and C. J. Philippopoulos, J. Hazardous Materials, B97, 257 (2003)
  3. C. A. C. Sequeira, D. M. F. Santos, and P. S. D. Brito, Appl. Surf. Sci., 252, 6093 (2006) https://doi.org/10.1016/j.apsusc.2005.11.028
  4. T. J. Park, J. S. Lim, Y. W. Lee, and S. H. Kim, J. Supercritical Fluids, 26, 201 (2003) https://doi.org/10.1016/S0896-8446(02)00161-4
  5. S. Elmaleh, M. B. Defrance, and C. Ghommidh, Process Biochemistry, 35, 441 (1999)
  6. K. S. Jun and Y. S. Won, Journal of KSWM, 22, 301 (2005)
  7. S. Findik, G. Gunduz, and E. Gunduz, Ultrasonics, 13, 203 (2006)
  8. M. S. Lee, J. D. Lee, and S. S. Hong, J. Industrual and Engineering Chemistry, 11, 495 (2005)
  9. M. D. Bermejo and M. J. Cocero, J. Hazardous Materials, B137, 965 (2006)
  10. Y. H. Son, M. K. Jeon, J. Y. Ban, M. S. Kang, and S. J. Choung, J. Industrual and Engineering Chemistry, 11, 938 (2005)
  11. R. Toor and M. Mohseni, Chemosphere, in press (2006)
  12. J. L. Lim, K. H. Lee, S. H. Chae, S. H. Kim, and H. W. Ahn, J. Korean Soc. Environ. Eng., 26, 1238 (2004)
  13. T. Ramesh, T. O. Kwon, and I. S. Moon, Korean J. Chemical Engineering, 22, 938 (2005) https://doi.org/10.1007/BF02705679
  14. L. Guzzella, D. Feretti, and S. Monarca, Water Research, 36, 4307 (2002) https://doi.org/10.1016/S0043-1354(02)00145-8
  15. T. Ramesh, T. O. Kwon, J. C. Jun, S. Balaji, M. Matheswaran, and I. S. Moon, J. Hazardous Materials, 142, 308 (2007) https://doi.org/10.1016/j.jhazmat.2006.08.023
  16. D. Y. Ha and S. H. Cho, J. Korean Soc. Environ. Eng., 25, 1123 (2003)
  17. J. A. Giroto, R. Guardani, A. C. S. C. Teixeira, and C. A. O. Nascimento, Chemical Engineering and Processing, 45, 523 (2006) https://doi.org/10.1016/j.cep.2005.12.001
  18. G. Yardin and S. Chiron, Chemosphere, 62, 1395 (2006) https://doi.org/10.1016/j.chemosphere.2005.05.019
  19. X. Feng, S. Ding, J. Tu, F. Wu, and N. Deng, Science of The Total Environment, 345, 229 (2005) https://doi.org/10.1016/j.scitotenv.2004.11.008
  20. M. Y. Ghaly, G. Hartel, R. Mayer, and R. Haseneder, Water Management, 21, 41 (2001)
  21. J. H. Shin, Y. D. Jeoung, and I. J. Yeon, Journal of KSWQ, 20, 251 (2004)
  22. Z. Pengyi, L. Fuyan, Y. Gang, C. Qing, and Z. Wanpeng, J. Photobiology A: Chemistry, 156, 189 (2003) https://doi.org/10.1016/S1010-6030(02)00432-X
  23. Y. Ku, W. Wang, and Y. S. Shen, J. Hazardous Materials, B72, 25 (2000)
  24. R. Andreozzi, V. Gaprio, A. Insola, R. Marotta, and R. Sanchirico, Water Research, 34, 620 (2000) https://doi.org/10.1016/S0043-1354(99)00169-4
  25. H. Kusic, N. Koprivance, and A. L. Bozie, Chemical Engineering J., 123, 127 (2006) https://doi.org/10.1016/j.cej.2006.07.011
  26. W. S. Chen, C. N. Juan, and K. M. Wei, J. Hazardous Materials, In press (2007)
  27. J. M. Monteagudo, M. Carmona, and A. Duran, Chemosphere, 60, 1103 (2005) https://doi.org/10.1016/j.chemosphere.2004.12.063
  28. N. Azbar, T. Yonar, and K. Kestioglu, Chemosphere, 55, 35 (2004) https://doi.org/10.1016/j.chemosphere.2003.10.046
  29. S. Esplugas, J. Gimenez, S. Contreras, and E. Pascual, Water Research, 36, 1034 (2002) https://doi.org/10.1016/S0043-1354(01)00301-3