DOI QR코드

DOI QR Code

Developmental Proteomic Profiling of Porcine Skeletal Muscle during Postnatal Development

  • Kim, Nam-Kuk (Department of Applied Biochemistry, College of Biomedical & Health Science Konkuk University) ;
  • Lim, Jong-Hyun (Department of Applied Biochemistry, College of Biomedical & Health Science Konkuk University) ;
  • Song, Min-Jin (Department of Applied Biochemistry, College of Biomedical & Health Science Konkuk University) ;
  • Kim, Oun-Hyun (Department of Animal Science, College of Natural Science, Konkuk University) ;
  • Park, Beom-Young (National Institute of Animal Science, Rural Development Admistration) ;
  • Kim, Myung-Jick (National Institute of Animal Science, Rural Development Admistration) ;
  • Hwang, In-Ho (Department of Animal Resources and Biotechnology, Chonbuk National University) ;
  • Lee, Chang-Soo (Department of Applied Biochemistry, College of Biomedical & Health Science Konkuk University)
  • Received : 2006.12.15
  • Accepted : 2007.03.19
  • Published : 2007.10.01

Abstract

In this study, we have compared the skeletal muscle proteome at various stages of porcine postnatal development. Korean native pigs were divided into five postnatal stages of 30, 70, 130, 170 and 300 d and their loin muscles were analyzed for muscle proteome by using two-dimensional electrophoresis and mass spectrometry. We found 5 proteins showing a consistent pattern during skeletal muscle growth. Four proteins were identified as myosin light chain 1 slow-twitch (MLC1sa) isoform, troponin T, triosephosphate isomerase (TIP) and DJ-1 protein. The remaining protein was not identified. Two muscle fiber proteins of MLC1sa isoform and troponin T showed a high expression level at an early postnatal stage and then their levels were decreased markedly during growth stages. On the other hand, the expression of TIP and DJ-1 protein, which are well known as catalysis enzyme and antioxidant-related protein, respectively, were linearly increased during growth stages. Thus, the stage-related muscle proteins may be useful as parameters for understanding the developmental characteristics of biochemical and physiological properties in Korean native pig skeletal muscle.

Keywords

References

  1. Beal, M. F. 2002. Oxidatively modified proteins in aging and disease. Free Radic. Biol. Med. 32:797-803. https://doi.org/10.1016/S0891-5849(02)00780-3
  2. Bendixen, E. 2005. The use of Proteomics in meat science. Meat Sci. 71:138-149. https://doi.org/10.1016/j.meatsci.2005.03.013
  3. Bertram, H. C., M. Rasmussen, H. Busk, N. Oksbjerg, A. H. Karlsson and H. J. Andersen. 2002. Change in porcine muscle water characteristics during growth: An in vitro low-field NMR relaxation study. J. Magn. Reson. 157:267-276. https://doi.org/10.1006/jmre.2002.2600
  4. Choi, B. H., J. S. Lee, G. W. Jang, H. Y. Lee, J. W. Lee, H. Y. Chung, H. S. Park, S. J. Oh, S. S. Sun, K. H. Myung, I. C. Cheong and T. H. Kim. 2006. Mapping of the porcine calpastatin gene and association study of its variance with economic traits in pigs. Asian-Aust. J. Anim. Sci. 19:1085-1089. https://doi.org/10.5713/ajas.2006.1085
  5. Dickerson, J. W. T. and E. M. Widdowson. 1960. Chemical changes in skeletal muscle during development. Bochem. J. 74:247-257. https://doi.org/10.1042/bj0740247
  6. Doherty, M. K., L. McLean, J. R. Hayter, J. M. Pratt, D. H. L. Robertson, A. El-Shafei, S. J. Gaskell and R. J. Beynon. 2004. The proteome of chicken skeletal muscle: Changes in soluble protein expression during growth in a layer strain. Proteomics 4:2082-2093. https://doi.org/10.1002/pmic.200300716
  7. Gracy, R. W., J. M. Talent and A. I. Zvaigzne. 1998. Molecular wear and tear leads to terminal marking and the unstable isoforms of aging. J. Exp. Zool. 282:18-27. https://doi.org/10.1002/(SICI)1097-010X(199809/10)282:1/2<18::AID-JEZ5>3.0.CO;2-Q
  8. Hailstones, D. L. and P. W. Gunning. 1990. Characterization of human myosin light chains 1sa and 3 nm: Implications for isoform evolution and function. Mol. Cell. Biol. 10:1095-1104. https://doi.org/10.1128/MCB.10.3.1095
  9. Hochstrasser, D. F., M. G. Harrington, A. C. Hochstrasser, M. J. Miller and C. R. Merril. 1988. Methods for increasing the resolution of two-dimensional protein electrophoresis. Anal. Biochem. 173:424-435. https://doi.org/10.1016/0003-2697(88)90209-6
  10. Hwang, I. H., B. Y. Park, J. H. Kim, S. H. Cho and J. M. Lee. 2005. Assement of postmortem proteolysis by gel-based proteome analysis and its relationship to meat quality traits in pig longissimus. Meat Sci. 69:79-91. https://doi.org/10.1016/j.meatsci.2004.06.019
  11. Jin, J. P., A. Chen and Q. Q. Huang. 1998. Three alternatively spliced mouse slow skeletal muscle troponin T isoforms: Conserved primary structure and regulated expressed during postnatal development. Gene 214:121-129. https://doi.org/10.1016/S0378-1119(98)00214-5
  12. Jurie, C., J. Robelin, B. Picard and Y. Geay. 1995. Post-natal changes in the biological characteristics of semitendinosus muscle in male limousin cattle. Meat Sci. 41:125-135. https://doi.org/10.1016/0309-1740(94)00074-H
  13. Kim, T. H., B. H. Choi, H. K. Lee, H. S.Park, H. Y. Lee, D. H. Yoon, J. W. Lee, G. J. Jeon, I. C. Cheong, S. J. Oh and J. Y. Han. 2005. Identification of quantitative traits loci (QTL) affecting growth traits in pigs. Asian-Aust. J. Anim. Sci. 18:1524-1528. https://doi.org/10.5713/ajas.2005.1524
  14. Kyprianou, P., A. Madgwick, M. Morgan, K. Krishan and G. K. Dhoot. 1997. Expression pattern of troponin I and distinct alternatively spliced developmental isoforms of troponin T in vitro and in neonatally denervated rat skeletal muscles. Basic Appl. Myol. 7:287-293.
  15. Lefaucheur, L. and P. Vigneron. 1986. Post-natal changes in some histochemical and enzymatic characteristics of three pig muscles. Met Sci. 16:199-216.
  16. Mahan, D. C. and R. G. Shields, Jr. 1998. Macro- and micromineral composition of pigs from birth to 145 kilograms of body weight. J. Anim. Sci. 76:506-512.
  17. Millward, D. J., P. J. Garlick, R. J. C. Stewart, D. O. Nnanyelugo and J. C. Waterlow. 1975. Skeletal-muscle growth and protein turnover. Biochem. J. 150:235-243. https://doi.org/10.1042/bj1500235
  18. Mitsumoto, A. and Y. Nakagawa. 2001. DJ-1 is an indicator for endogenous reactive oxygen species elicited by endotoxin. Free Radic. Res. 35:85-893. https://doi.org/10.1080/10715760100300621
  19. Moss, R. L., G. M. Diffee and M. L. Greaser. 1995. Contractile properties of skeletal muscle fibers in relation to myofibrillar protein isoforms. Rev. Physiol. Biochem. Pharmac. 126:1-63. https://doi.org/10.1007/BFb0049775
  20. Nagakubo, D., T. Taira, H. Kitaura, M. Ikeda, K. Tamai, S. M. Iguchi-Ariga and H. Ariga. 1997. DJ-1, a novel oncogene which transforms mouse HIH3T3 cells in cooperation with ras. Biochem. Biophys. Res. Commun. 231:509-513. https://doi.org/10.1006/bbrc.1997.6132
  21. Perry, S. V. 1998. Troponin-T: Genetics, properties, and function. J. Muscle Res. Cell Motil. 19:575-602. https://doi.org/10.1023/A:1005397501968
  22. Pontier, P. J. and N. H. Hart. 1981. Developmental expression of glucose and triose phosphate isomerase genes in teleost fishes (brachydanio). J. Exp. Zool. 217:53-71. https://doi.org/10.1002/jez.1402170107
  23. Sabry, M. A. and G. K. Dhoot. 1991. Identification and pattern of transitions of fast skeletal muscle-like developmental and adult isoforms of troponin T in some rat and human skeletal muscle. J. Muscle Res. Cell Motil. 12:447-454. https://doi.org/10.1007/BF01738329
  24. Sharma, P. M. 1996. Muscle molecular genetics of human. In: Meyers, R. A. Encyclopedia of molecular biology and molecular medicine. Vol 4. Wiley-VCH Verlag-GmbH, Weinheim, Federal Republic of Germany. pp. 133-142.
  25. Stadtman, E. R. 1992. Protein oxidation and aging. Science 257:1220-1224. https://doi.org/10.1126/science.1355616
  26. Taira, T., Y. Saito, T. Niki, S. M. M. Iguchi-Ariga and K. Takahashi. 2004. DJ-1 has a role in antioxidative stress to prevent cell death. EMBO reports 5:213-218. https://doi.org/10.1038/sj.embor.7400074
  27. Zhang, Y., K. U. Yuksel and R. W. Gracy. 1995. Terminal marking of avian triosephosphate isomerase by deamination and oxidation. Arch. Biochem. Biophys. 317:112-120. https://doi.org/10.1006/abbi.1995.1142

Cited by

  1. Association of Succinate Dehydrogenase and Triose Phosphate Isomerase Gene Expression with Intramuscular Fat Content in Loin Muscle of Korean (Hanwoo) Cattle vol.22, pp.1, 2012, https://doi.org/10.5352/JLS.2012.22.1.31
  2. Porcine skeletal muscle differentially expressed gene ATP5B: molecular characterization, expression patterns, and association analysis with meat quality traits vol.24, pp.3-4, 2013, https://doi.org/10.1007/s00335-013-9446-2
  3. Integrative analysis of transcriptomics and proteomics of skeletal muscles of the Chinese indigenous Shaziling pig compared with the Yorkshire breed vol.17, pp.1, 2016, https://doi.org/10.1186/s12863-016-0389-y
  4. Differential proteome analysis of porcine skeletal muscles between Meishan and Large White1 vol.87, pp.8, 2009, https://doi.org/10.2527/jas.2008-1708
  5. Expression Analysis of miRNAs in Porcine Fetal Skeletal Muscle on Days 65 and 90 of Gestation vol.21, pp.7, 2007, https://doi.org/10.5713/ajas.2008.70521
  6. Identification of Differentially Expressed Proteins at Four Growing Stages in Chicken Liver vol.21, pp.10, 2007, https://doi.org/10.5713/ajas.2008.70649
  7. Differential proteome and transcriptome analysis of porcine skeletal muscle during development vol.75, pp.7, 2007, https://doi.org/10.1016/j.jprot.2012.01.013
  8. Animal board invited review: advances in proteomics for animal and food sciences vol.9, pp.1, 2015, https://doi.org/10.1017/s1751731114002602
  9. Comparison of carcass traits, meat quality and expressions of MyHCs in muscles between Mashen and Large White pigs vol.18, pp.1, 2019, https://doi.org/10.1080/1828051x.2019.1674701
  10. Differential protein profiles in duck meat during the early postmortem storage period vol.90, pp.6, 2007, https://doi.org/10.1111/asj.13166
  11. Research Note: Expression level of heat shock protein 27 in PSE-like and fast-glycolyzing conditions of chicken pectoralis major muscle vol.100, pp.11, 2007, https://doi.org/10.1016/j.psj.2021.101424