DOI QR코드

DOI QR Code

Characterization of a Stress-Responsive Ankyrin Repeat-Containing Zinc Finger Protein of Capsicum annuum (CaKR1)

  • Seong, Eun-Soo (School of Biotechnology, Kangwon National University) ;
  • Choi, Do-Il (Plant Genome Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Cho, Hye-Sun (Plant Genome Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lim, Chun-Keum (College of Agriculture and Life Sciences, Kangwon National University) ;
  • Cho, Hye-Jeong (School of Biotechnology, Kangwon National University) ;
  • Wang, Myeong-Hyeon (School of Biotechnology, Kangwon National University)
  • Published : 2007.11.30

Abstract

We isolated many genes induced from pepper cDNA microarray data following their infection with the soybean pustule pathogen Xanthomonas axonopodis pv. glycines 8ra. A full-length cDNA clone of the Capsicum annuum ankyrin-repeat domain $C_3H_1$ zinc finger protein (CaKR1) was identified in a chili pepper using the expressed sequence tag (EST) database. The deduced amino acid sequence of CaKR1 showed a significant sequence similarity (46%) to the ankyrin-repeat protein in very diverse family of proteins of Arabidopsis. The gene was induced in response to various biotic and abiotic stresses in the pepper leaves, as well as by an incompatible pathogen, such as salicylic acid (SA) and ethephon. CaKR1 expression was highest in the root and flower, and its expression was induced by treatment with agents such as NaCl and methyl viologen, as well as by cold stresses. These results showed that CaKR1 fusion with soluble, modified green fluorescent protein (smGFP) was localized to the cytosol in Arabidopsis protoplasts, suggesting that CaKR1 might be involved in responses to both biotic and abiotic stresses in pepper plants.

Keywords

References

  1. AbuQamar, S., Chen, X., Dhawan, R., Bluhm, B., Salmeron, J., Lam, S., Dietrich, R. A. and Mengiste, T. (2006) Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. Plant J. 48, 28-44. https://doi.org/10.1111/j.1365-313X.2006.02849.x
  2. Becerra, C., Jahrmann, T., Puigdomenech, P. and Vicient, C. M. (2004) Ankyrin repeat-containing proteins in Arabidopsis: characterization of a novel and abundant group of genes coding ankyrin-transmembrane proteins. Gene 340, 111-121. https://doi.org/10.1016/j.gene.2004.06.006
  3. Bork, P. (1993) Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Proteins 17, 363-374. https://doi.org/10.1002/prot.340170405
  4. Bray, E. A. (1993) Molecular responses to water deficit. Plant Physiol. 103, 1035-1040. https://doi.org/10.1104/pp.103.4.1035
  5. Cao, H., Glazebrook, J., Clarke, J. D., Volko, S. and Dong, X. (1997) The Arabidopsis NPR1gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57-63. https://doi.org/10.1016/S0092-8674(00)81858-9
  6. Cheeseman, K. H. and Slater, T. F. (1993) An introduction to free radical biochemistry. Br. Med. Bull. 49, 481-493. https://doi.org/10.1093/oxfordjournals.bmb.a072625
  7. Cheong, Y. H., Chang, H. S., Gupta, R., Wang, X., Zhu, X. and Luan, S. (2003) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol. 129, 661-677. https://doi.org/10.1104/pp.002857
  8. Chinchilla, D., Merchan, F., Megias, M., Kondorosi, A., Sousa, C. and Crespi, M. (2003) Ankyrin protein kinases: a novel type of plant kinase gene whose expression is induced by osmotic stress in alfalfa. Plant Mol. Biol. 51, 555-566. https://doi.org/10.1023/A:1022337221225
  9. Chomczynski, P. and Sacchi, N. (1987) Single step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156-159.
  10. Chung, E., Kim, S. Y., Yi, S. Y. and Choi, D. (2003) Capsicum annuum dehydrin, an osmotic-stress gene in chili pepper plants. Mol. Cells 15, 327-332.
  11. Cohen, A. and Bray, E. A. (1990) Characterization of three mRNAs that accumulate in wilted tomato leaves in response to elevated levels of endogenous abscisic acid. Planta 182, 27-33.
  12. Dangl, J. L. and Jones, J. D. G. (2001) Plant pathogens and integrated defense responses to infection. Nature 411, 826-833. https://doi.org/10.1038/35081161
  13. David, S. J. and Vierstra, R. D. (1996) Soluble derivatives of green fluorescent protein (GFP) for use in Arabidopsis thaliana. Weeds World 3, 43-48.
  14. Despres, B., Delseny, M. and Devic, M. (2001) Partial complementation of embryo defective mutations: a general strategy to elucidate gene function. Plant J. 27, 149-159. https://doi.org/10.1046/j.1365-313x.2001.01078.x
  15. Dixon, R. A. and Lamb, C. J. (1990) Molecular communication in interactions between plants and microbial pathogens. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 339-367. https://doi.org/10.1146/annurev.pp.41.060190.002011
  16. Durner, J., Shah, J. and Klessig, D. F. (1997) Salicylic acid and disease resistance in plants. Trends Plant Sci. 2, 266-274. https://doi.org/10.1016/S1360-1385(97)86349-2
  17. Ecker, J. and Davis, R. W. (1987) Plant defense genes are regulated by ethylene. Proc. Natl. Acad. Sci. USA 84, 5202-5206. https://doi.org/10.1073/pnas.84.15.5202
  18. Fan, W. and Dong, X. (2002) In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14, 1377-1389. https://doi.org/10.1105/tpc.001628
  19. Fujibe, T., Saii, H., Arakawa, K., Yabe, N., Takeuchi, Y. and Yamamoto, K. T. (2003) A methyl viologen-resistant mutant of Arabidopsis, which is allelic to ozone-sensitive rcd1, is tolerant to supplemental ultraviolet-B irradiation. Plant Physiol. 134, 275-285. https://doi.org/10.1104/pp.103.033480
  20. Heath, M. C. (2000) Hypersensitive response-related death. Plant Mol. Biol. 44, 321-334. https://doi.org/10.1023/A:1026592509060
  21. Hemsley, P. A., Kemp, A. C. and Grierson, C. S. (2005) The TIP GROWTH DEFECTIVE1S-acyl transferase regulates plant cell growth in Arabidopsis. Plant Cell 17, 2554-2563. https://doi.org/10.1105/tpc.105.031237
  22. Huang, J., Chen, F., Casino, C. D., Autino, A., Shen, M., Yuan, S., Peng J., Shi, H., Wang, C., Cresti, M. and Li, Y. (2006) An ankyrin repeat-containing protein, characterized as a ubiquitin ligase, is closely associated with membrane-enclosed organelles and required for pollen germination and pollen tube growth in lily. Plant Physiol. 140, 1374-1383. https://doi.org/10.1104/pp.105.074922
  23. Hwang, I., Lim, S. M. and Shaw, P. D. (1992) Cloning and characterization of pathogenecity genes from Xanthomonas campestris pv. Glycines. J. Bacteriol. 174, 1919-1923.
  24. Kang, S. G., Jin, J. B., Piao, H. L., Pih, K. T., Jang, H. J., Lim, J. H. and Hwang, I. (1998) Molecular cloning of an Arabidopsis cDNA encoding a dynamin-like protein that is localized to plastids. Plant Mol. Biol. 38, 437-447. https://doi.org/10.1023/A:1006099718761
  25. Kim, S. Y., Kim, Y. C., Lee, J. H., Oh, S. K., Chung, E., Lee, S., Lee, Y. H., Choi, D. and Park, J. M. (2005) Identification of a CaRAV1 possessing an AP2/ERF and B3 DNA-binding domain from pepper leaves infected with Xanthomonas axonopodis pv. glycines 8ra by differential display. Biochim. Biophy. Acta 1729, 141-146. https://doi.org/10.1016/j.bbaexp.2005.04.009
  26. Kuhlmann, M., Horvay, K., Strathmann, A., Heinekamp, T., Fischer, U., Bottner, S. and Droge-Laser, W. (2003) The alpha-helical D1 domain of the tobacco bZIP transcription factor BZI-1 interacts with the ankyrin-repeat protein ANK1 and is important for BZI-1 function, both in auxin signaling and pathogen response. J. Biol. Chem. 278, 8786-8794. https://doi.org/10.1074/jbc.M210292200
  27. La Camera, S., Gouzerh, G., Dhondt, S., Hoffmann, L., Fritig, B., Legrand, M. and Heitz, T. (2004) Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunol. Rev. 198, 267-284. https://doi.org/10.1111/j.0105-2896.2004.0129.x
  28. Lee, S., Kim, S. Y., Chung, E., Joung, Y. H., Pai, H. S., Hur, C. G. and Choi, D. (2004) EST and microarray analyses of pathogenresponsive genes in hot pepper (Capsicum annuum L.) non-host resistance against soybean pustule pathogen (Xanthomonas axonopodis pv. glycines). Func. Integr. Genomic 4, 196-205.
  29. Levine, A., Tenhaken, R., Dixon, R. and Lamb, C. (1994) $H_2O_2$ from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79, 583-593. https://doi.org/10.1016/0092-8674(94)90544-4
  30. Li, H. Y. and Chye, M. L. (2004) Arabidopsis acyl-coA-binding protein ACBP2 interacts with an ethylene-responsive elementbinding protein, AtEBP, via its ankyrin repeats. Plant Mol. Biol. 54, 233-243. https://doi.org/10.1023/B:PLAN.0000028790.75090.ab
  31. Lu, H., Liu, Y. and Greenberg, J. T. (2005) Structure-function analysis of the plasma membranelocalized Arabidopsis defense component ACD6. Plant J. 44, 798-809. https://doi.org/10.1111/j.1365-313X.2005.02567.x
  32. Lux, S. E., John, K. M. and Bennett, V. (1990) Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature 344, 36-42. https://doi.org/10.1038/344036a0
  33. Mauchi-Mani, B. and Mauch, F. (2005) The role of abscisic acid in plant-pathogen interactions. Curr. Opin. Plant Biol. 8, 409-414. https://doi.org/10.1016/j.pbi.2005.05.015
  34. Pieterse, C. M., van Wees, S. C., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J. and van Loon, L. C. (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10, 1571-1580. https://doi.org/10.1105/tpc.10.9.1571
  35. Reymond, P. and Farmer, E. E. (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1, 404-411. https://doi.org/10.1016/S1369-5266(98)80264-1
  36. Salin, M. A. (1988) Toxic oxygen species and protective systems of chloroplast. Physiol. Plant 72, 681-689. https://doi.org/10.1111/j.1399-3054.1988.tb09182.x
  37. Sedgwick, S. G. and Smerdon, S. J. (1999) The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem. Sci. 24, 311-316. https://doi.org/10.1016/S0968-0004(99)01426-7
  38. Weissman, A. M. (2001) Themes and variations on ubiquitination. Nat. Rev. Mol. Cell. Biol. 2, 169-178. https://doi.org/10.1038/35056563
  39. Yan, J., Wang, J. and Zhang, H. (2002) An ankyrin repeat-containing protein plays a role in both disease resistance and antioxidation metabolism. Plant J. 29, 193-202. https://doi.org/10.1046/j.0960-7412.2001.01205.x
  40. Yang, Y., Shah, J. and Klessig, D. F. (1997) Signal perception and transduction in plant defense responses. Genes Dev. 11, 1621-1639. https://doi.org/10.1101/gad.11.13.1621
  41. Yi, S. Y., Kim, J. H., Joung, Y. H., Lee, S., Kim, W. T., Yu, S. H. and Choi, D. (2004) The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol. 136, 2862-2874. https://doi.org/10.1104/pp.104.042903
  42. Zhang, H., Scheirer, D. C., Fowle, W. H. and Goodmanav, H. M. (1992) Expression of antisense or sense RNA of an ankyrin repeat-containing gene blocks chloroplast differentiation in Arabidopsis. Plant Cell 4, 1575-1588. https://doi.org/10.1105/tpc.4.12.1575

Cited by

  1. In silico analysis reveals the presence of a large number of Ankyrin repeat containing proteins in Ectocarpus siliculosus vol.4, pp.4, 2012, https://doi.org/10.1007/s12539-012-0134-9
  2. Superfamily of ankyrin repeat proteins in tomato vol.523, pp.2, 2013, https://doi.org/10.1016/j.gene.2013.03.122
  3. Molecular insights into the function of ankyrin proteins in plants vol.58, pp.5, 2015, https://doi.org/10.1007/s12374-015-0228-0
  4. The Novel Gene VpPR4-1 from Vitis pseudoreticulata Increases Powdery Mildew Resistance in Transgenic Vitis vinifera L. vol.7, 2016, https://doi.org/10.3389/fpls.2016.00695
  5. Tomato plants overexpressing CaKR1 enhanced tolerance to salt and oxidative stress vol.363, pp.4, 2007, https://doi.org/10.1016/j.bbrc.2007.09.104
  6. Significant Microsynteny with New Evolutionary Highlights Is Detected through Comparative Genomic Sequence Analysis of Maize CCCH IX Gene Subfamily vol.2015, 2015, https://doi.org/10.1155/2015/824287
  7. The ankyrin repeat gene family in rice: genome-wide identification, classification and expression profiling vol.71, pp.3, 2009, https://doi.org/10.1007/s11103-009-9518-6
  8. Subtractive transcriptome analysis of leaf and rhizome reveals differentially expressed transcripts in Panax sokpayensis vol.16, pp.6, 2016, https://doi.org/10.1007/s10142-016-0517-9
  9. Molecular characterization of rice OsBIANK1, encoding a plasma membrane-anchored ankyrin repeat protein, and its inducible expression in defense responses vol.37, pp.2, 2010, https://doi.org/10.1007/s11033-009-9507-5
  10. Heat-inducible C3HC4 type RING zinc finger protein gene from Capsicum annuum enhances growth of transgenic tobacco vol.229, pp.4, 2009, https://doi.org/10.1007/s00425-008-0884-0
  11. Ectopic Expression of RiceOsBIANK1, Encoding an Ankyrin Repeat-Containing Protein, inArabidopsisConfers Enhanced Disease Resistance toBotrytis cinereaandPseudomonas syringae vol.161, pp.1, 2013, https://doi.org/10.1111/jph.12023
  12. Transcriptional responses of Italian ryegrass during interaction with Xanthomonas translucens pv. graminis reveal novel candidate genes for bacterial wilt resistance vol.122, pp.3, 2011, https://doi.org/10.1007/s00122-010-1470-y
  13. Physio-biochemical analysis and transcript profiling of Saccharum officinarum L. submitted to salt stress vol.33, pp.4, 2011, https://doi.org/10.1007/s11738-010-0676-6
  14. Construction and characterization of a cDNA library from floral organs and fruitlets of Citrus reticulata vol.55, pp.3, 2011, https://doi.org/10.1007/s10535-011-0107-6
  15. Oxidative Stress Associated with Chilling Injury in Immature Fruit: Postharvest Technological and Biotechnological Solutions vol.18, pp.7, 2017, https://doi.org/10.3390/ijms18071467
  16. Transcriptomics Analysis Identified Candidate Genes Colocalized with Seed Dormancy QTLs in Rice (Oryza sativa L.) vol.53, pp.5, 2010, https://doi.org/10.1007/s12374-010-9120-0
  17. A major QTL and candidate genes for capsaicinoid biosynthesis in the pericarp of Capsicum chinense revealed using QTL-seq and RNA-seq pp.1432-2242, 2018, https://doi.org/10.1007/s00122-018-3238-8