References
- AbuQamar, S., Chen, X., Dhawan, R., Bluhm, B., Salmeron, J., Lam, S., Dietrich, R. A. and Mengiste, T. (2006) Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. Plant J. 48, 28-44. https://doi.org/10.1111/j.1365-313X.2006.02849.x
- Becerra, C., Jahrmann, T., Puigdomenech, P. and Vicient, C. M. (2004) Ankyrin repeat-containing proteins in Arabidopsis: characterization of a novel and abundant group of genes coding ankyrin-transmembrane proteins. Gene 340, 111-121. https://doi.org/10.1016/j.gene.2004.06.006
- Bork, P. (1993) Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Proteins 17, 363-374. https://doi.org/10.1002/prot.340170405
- Bray, E. A. (1993) Molecular responses to water deficit. Plant Physiol. 103, 1035-1040. https://doi.org/10.1104/pp.103.4.1035
- Cao, H., Glazebrook, J., Clarke, J. D., Volko, S. and Dong, X. (1997) The Arabidopsis NPR1gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57-63. https://doi.org/10.1016/S0092-8674(00)81858-9
- Cheeseman, K. H. and Slater, T. F. (1993) An introduction to free radical biochemistry. Br. Med. Bull. 49, 481-493. https://doi.org/10.1093/oxfordjournals.bmb.a072625
- Cheong, Y. H., Chang, H. S., Gupta, R., Wang, X., Zhu, X. and Luan, S. (2003) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol. 129, 661-677. https://doi.org/10.1104/pp.002857
- Chinchilla, D., Merchan, F., Megias, M., Kondorosi, A., Sousa, C. and Crespi, M. (2003) Ankyrin protein kinases: a novel type of plant kinase gene whose expression is induced by osmotic stress in alfalfa. Plant Mol. Biol. 51, 555-566. https://doi.org/10.1023/A:1022337221225
- Chomczynski, P. and Sacchi, N. (1987) Single step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156-159.
- Chung, E., Kim, S. Y., Yi, S. Y. and Choi, D. (2003) Capsicum annuum dehydrin, an osmotic-stress gene in chili pepper plants. Mol. Cells 15, 327-332.
- Cohen, A. and Bray, E. A. (1990) Characterization of three mRNAs that accumulate in wilted tomato leaves in response to elevated levels of endogenous abscisic acid. Planta 182, 27-33.
- Dangl, J. L. and Jones, J. D. G. (2001) Plant pathogens and integrated defense responses to infection. Nature 411, 826-833. https://doi.org/10.1038/35081161
- David, S. J. and Vierstra, R. D. (1996) Soluble derivatives of green fluorescent protein (GFP) for use in Arabidopsis thaliana. Weeds World 3, 43-48.
- Despres, B., Delseny, M. and Devic, M. (2001) Partial complementation of embryo defective mutations: a general strategy to elucidate gene function. Plant J. 27, 149-159. https://doi.org/10.1046/j.1365-313x.2001.01078.x
- Dixon, R. A. and Lamb, C. J. (1990) Molecular communication in interactions between plants and microbial pathogens. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 339-367. https://doi.org/10.1146/annurev.pp.41.060190.002011
- Durner, J., Shah, J. and Klessig, D. F. (1997) Salicylic acid and disease resistance in plants. Trends Plant Sci. 2, 266-274. https://doi.org/10.1016/S1360-1385(97)86349-2
- Ecker, J. and Davis, R. W. (1987) Plant defense genes are regulated by ethylene. Proc. Natl. Acad. Sci. USA 84, 5202-5206. https://doi.org/10.1073/pnas.84.15.5202
- Fan, W. and Dong, X. (2002) In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14, 1377-1389. https://doi.org/10.1105/tpc.001628
- Fujibe, T., Saii, H., Arakawa, K., Yabe, N., Takeuchi, Y. and Yamamoto, K. T. (2003) A methyl viologen-resistant mutant of Arabidopsis, which is allelic to ozone-sensitive rcd1, is tolerant to supplemental ultraviolet-B irradiation. Plant Physiol. 134, 275-285. https://doi.org/10.1104/pp.103.033480
- Heath, M. C. (2000) Hypersensitive response-related death. Plant Mol. Biol. 44, 321-334. https://doi.org/10.1023/A:1026592509060
- Hemsley, P. A., Kemp, A. C. and Grierson, C. S. (2005) The TIP GROWTH DEFECTIVE1S-acyl transferase regulates plant cell growth in Arabidopsis. Plant Cell 17, 2554-2563. https://doi.org/10.1105/tpc.105.031237
- Huang, J., Chen, F., Casino, C. D., Autino, A., Shen, M., Yuan, S., Peng J., Shi, H., Wang, C., Cresti, M. and Li, Y. (2006) An ankyrin repeat-containing protein, characterized as a ubiquitin ligase, is closely associated with membrane-enclosed organelles and required for pollen germination and pollen tube growth in lily. Plant Physiol. 140, 1374-1383. https://doi.org/10.1104/pp.105.074922
- Hwang, I., Lim, S. M. and Shaw, P. D. (1992) Cloning and characterization of pathogenecity genes from Xanthomonas campestris pv. Glycines. J. Bacteriol. 174, 1919-1923.
- Kang, S. G., Jin, J. B., Piao, H. L., Pih, K. T., Jang, H. J., Lim, J. H. and Hwang, I. (1998) Molecular cloning of an Arabidopsis cDNA encoding a dynamin-like protein that is localized to plastids. Plant Mol. Biol. 38, 437-447. https://doi.org/10.1023/A:1006099718761
- Kim, S. Y., Kim, Y. C., Lee, J. H., Oh, S. K., Chung, E., Lee, S., Lee, Y. H., Choi, D. and Park, J. M. (2005) Identification of a CaRAV1 possessing an AP2/ERF and B3 DNA-binding domain from pepper leaves infected with Xanthomonas axonopodis pv. glycines 8ra by differential display. Biochim. Biophy. Acta 1729, 141-146. https://doi.org/10.1016/j.bbaexp.2005.04.009
- Kuhlmann, M., Horvay, K., Strathmann, A., Heinekamp, T., Fischer, U., Bottner, S. and Droge-Laser, W. (2003) The alpha-helical D1 domain of the tobacco bZIP transcription factor BZI-1 interacts with the ankyrin-repeat protein ANK1 and is important for BZI-1 function, both in auxin signaling and pathogen response. J. Biol. Chem. 278, 8786-8794. https://doi.org/10.1074/jbc.M210292200
- La Camera, S., Gouzerh, G., Dhondt, S., Hoffmann, L., Fritig, B., Legrand, M. and Heitz, T. (2004) Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunol. Rev. 198, 267-284. https://doi.org/10.1111/j.0105-2896.2004.0129.x
- Lee, S., Kim, S. Y., Chung, E., Joung, Y. H., Pai, H. S., Hur, C. G. and Choi, D. (2004) EST and microarray analyses of pathogenresponsive genes in hot pepper (Capsicum annuum L.) non-host resistance against soybean pustule pathogen (Xanthomonas axonopodis pv. glycines). Func. Integr. Genomic 4, 196-205.
-
Levine, A., Tenhaken, R., Dixon, R. and Lamb, C. (1994)
$H_2O_2$ from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79, 583-593. https://doi.org/10.1016/0092-8674(94)90544-4 - Li, H. Y. and Chye, M. L. (2004) Arabidopsis acyl-coA-binding protein ACBP2 interacts with an ethylene-responsive elementbinding protein, AtEBP, via its ankyrin repeats. Plant Mol. Biol. 54, 233-243. https://doi.org/10.1023/B:PLAN.0000028790.75090.ab
- Lu, H., Liu, Y. and Greenberg, J. T. (2005) Structure-function analysis of the plasma membranelocalized Arabidopsis defense component ACD6. Plant J. 44, 798-809. https://doi.org/10.1111/j.1365-313X.2005.02567.x
- Lux, S. E., John, K. M. and Bennett, V. (1990) Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature 344, 36-42. https://doi.org/10.1038/344036a0
- Mauchi-Mani, B. and Mauch, F. (2005) The role of abscisic acid in plant-pathogen interactions. Curr. Opin. Plant Biol. 8, 409-414. https://doi.org/10.1016/j.pbi.2005.05.015
- Pieterse, C. M., van Wees, S. C., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J. and van Loon, L. C. (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10, 1571-1580. https://doi.org/10.1105/tpc.10.9.1571
- Reymond, P. and Farmer, E. E. (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1, 404-411. https://doi.org/10.1016/S1369-5266(98)80264-1
- Salin, M. A. (1988) Toxic oxygen species and protective systems of chloroplast. Physiol. Plant 72, 681-689. https://doi.org/10.1111/j.1399-3054.1988.tb09182.x
- Sedgwick, S. G. and Smerdon, S. J. (1999) The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem. Sci. 24, 311-316. https://doi.org/10.1016/S0968-0004(99)01426-7
- Weissman, A. M. (2001) Themes and variations on ubiquitination. Nat. Rev. Mol. Cell. Biol. 2, 169-178. https://doi.org/10.1038/35056563
- Yan, J., Wang, J. and Zhang, H. (2002) An ankyrin repeat-containing protein plays a role in both disease resistance and antioxidation metabolism. Plant J. 29, 193-202. https://doi.org/10.1046/j.0960-7412.2001.01205.x
- Yang, Y., Shah, J. and Klessig, D. F. (1997) Signal perception and transduction in plant defense responses. Genes Dev. 11, 1621-1639. https://doi.org/10.1101/gad.11.13.1621
- Yi, S. Y., Kim, J. H., Joung, Y. H., Lee, S., Kim, W. T., Yu, S. H. and Choi, D. (2004) The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol. 136, 2862-2874. https://doi.org/10.1104/pp.104.042903
- Zhang, H., Scheirer, D. C., Fowle, W. H. and Goodmanav, H. M. (1992) Expression of antisense or sense RNA of an ankyrin repeat-containing gene blocks chloroplast differentiation in Arabidopsis. Plant Cell 4, 1575-1588. https://doi.org/10.1105/tpc.4.12.1575
Cited by
- In silico analysis reveals the presence of a large number of Ankyrin repeat containing proteins in Ectocarpus siliculosus vol.4, pp.4, 2012, https://doi.org/10.1007/s12539-012-0134-9
- Superfamily of ankyrin repeat proteins in tomato vol.523, pp.2, 2013, https://doi.org/10.1016/j.gene.2013.03.122
- Molecular insights into the function of ankyrin proteins in plants vol.58, pp.5, 2015, https://doi.org/10.1007/s12374-015-0228-0
- The Novel Gene VpPR4-1 from Vitis pseudoreticulata Increases Powdery Mildew Resistance in Transgenic Vitis vinifera L. vol.7, 2016, https://doi.org/10.3389/fpls.2016.00695
- Tomato plants overexpressing CaKR1 enhanced tolerance to salt and oxidative stress vol.363, pp.4, 2007, https://doi.org/10.1016/j.bbrc.2007.09.104
- Significant Microsynteny with New Evolutionary Highlights Is Detected through Comparative Genomic Sequence Analysis of Maize CCCH IX Gene Subfamily vol.2015, 2015, https://doi.org/10.1155/2015/824287
- The ankyrin repeat gene family in rice: genome-wide identification, classification and expression profiling vol.71, pp.3, 2009, https://doi.org/10.1007/s11103-009-9518-6
- Subtractive transcriptome analysis of leaf and rhizome reveals differentially expressed transcripts in Panax sokpayensis vol.16, pp.6, 2016, https://doi.org/10.1007/s10142-016-0517-9
- Molecular characterization of rice OsBIANK1, encoding a plasma membrane-anchored ankyrin repeat protein, and its inducible expression in defense responses vol.37, pp.2, 2010, https://doi.org/10.1007/s11033-009-9507-5
- Heat-inducible C3HC4 type RING zinc finger protein gene from Capsicum annuum enhances growth of transgenic tobacco vol.229, pp.4, 2009, https://doi.org/10.1007/s00425-008-0884-0
- Ectopic Expression of RiceOsBIANK1, Encoding an Ankyrin Repeat-Containing Protein, inArabidopsisConfers Enhanced Disease Resistance toBotrytis cinereaandPseudomonas syringae vol.161, pp.1, 2013, https://doi.org/10.1111/jph.12023
- Transcriptional responses of Italian ryegrass during interaction with Xanthomonas translucens pv. graminis reveal novel candidate genes for bacterial wilt resistance vol.122, pp.3, 2011, https://doi.org/10.1007/s00122-010-1470-y
- Physio-biochemical analysis and transcript profiling of Saccharum officinarum L. submitted to salt stress vol.33, pp.4, 2011, https://doi.org/10.1007/s11738-010-0676-6
- Construction and characterization of a cDNA library from floral organs and fruitlets of Citrus reticulata vol.55, pp.3, 2011, https://doi.org/10.1007/s10535-011-0107-6
- Oxidative Stress Associated with Chilling Injury in Immature Fruit: Postharvest Technological and Biotechnological Solutions vol.18, pp.7, 2017, https://doi.org/10.3390/ijms18071467
- Transcriptomics Analysis Identified Candidate Genes Colocalized with Seed Dormancy QTLs in Rice (Oryza sativa L.) vol.53, pp.5, 2010, https://doi.org/10.1007/s12374-010-9120-0
- A major QTL and candidate genes for capsaicinoid biosynthesis in the pericarp of Capsicum chinense revealed using QTL-seq and RNA-seq pp.1432-2242, 2018, https://doi.org/10.1007/s00122-018-3238-8