DOI QR코드

DOI QR Code

Molecular Cloning of Two Genes Encoding Cinnamate 4-Hydroxylase (C4H) from Oilseed Rape (Brassica napus)

  • Chen, An-He (Chongqing Rapeseed Technology Research Center, Chongqing Key Laboratory of Crop Quality Improvement, Key Lab of Biotechnology & Crop Quality Improvement of Ministry of Agriculture, College of Agronomy and Life Sciences, Southwest University) ;
  • Chai, You-Rong (Chongqing Rapeseed Technology Research Center, Chongqing Key Laboratory of Crop Quality Improvement, Key Lab of Biotechnology & Crop Quality Improvement of Ministry of Agriculture, College of Agronomy and Life Sciences, Southwest University) ;
  • Li, Jia-Na (Chongqing Rapeseed Technology Research Center, Chongqing Key Laboratory of Crop Quality Improvement, Key Lab of Biotechnology & Crop Quality Improvement of Ministry of Agriculture, College of Agronomy and Life Sciences, Southwest University) ;
  • Chen, Li (Chongqing Rapeseed Technology Research Center, Chongqing Key Laboratory of Crop Quality Improvement, Key Lab of Biotechnology & Crop Quality Improvement of Ministry of Agriculture, College of Agronomy and Life Sciences, Southwest University)
  • Published : 2007.03.31

Abstract

Cinnamate 4-hydroxylase (C4H) is a key enzyme of phenylpropanoid pathway, which synthesizes numerous secondary metabolites to participate in development and adaption. Two C4H isoforms, the 2192-bp BnC4H-1 and 2108-bp BnC4H-2, were cloned from oilseed rape (Brassica napus). They both have two introns and a 1518-bp open reading frame encoding a 505-amino-acid polypeptide. BnC4H-1 is 57.73 kDa with an isoelectric point of 9.11, while 57.75 kDa and 9.13 for BnC4H-2. They share only 80.6% identities on nucleotide level but 96.6% identities and 98.4% positives on protein level. Showing highest homologies to Arabidopsis thaliana C4H, they possess a conserved p450 domain and all P450-featured motifs, and are identical to typical C4Hs at substrate-recognition sites and active site residues. They are most probably associated with endoplasmic reticulum by one or both of the N- and C-terminal transmembrane helices. Phosphorylation may be a necessary post-translational modification. Their secondary structures are dominated by alpha helices and random coils. Most helices locate in the central region, while extended strands mainly distribute before and after this region. Southern blot indicated about 9 or more C4H paralogs in B. napus. In hypocotyl, cotyledon, stem, flower, bud, young- and middle-stage seed, they are co-dominantly expressed. In root and old seed, BnC4H-2 is dominant over BnC4H-1, with a reverse trend in leaf and pericarp. Paralogous C4H numbers in Brassicaceae genomes and possible roles of conserved motifs in 5' UTR and the 2nd intron are discussed.

Keywords

References

  1. Anterola, A. M. and Lewis, N. G. (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61, 221-294. https://doi.org/10.1016/S0031-9422(02)00211-X
  2. Barber, M. S. and Mitchell, H. J. (1997) Regulation of phenylpropanoid metabolism in relation to lignin biosynthesis in plants. Int. Rev. Cytol. 172, 243-293. https://doi.org/10.1016/S0074-7696(08)62362-1
  3. Bell-Lelong, D. A., Cusumano, J. C., Meyer, K. and Chapple, C. (1997) Cinnamate-4-hydroxylase expression in Arabidopsis (Regulation in response to development and the environment). Plant Physiol. 113, 729-738. https://doi.org/10.1104/pp.113.3.729
  4. Benavente-Garcia, O., Castillo, J., Marin, F. R., Ortuno, A. and Del Rio, J. A. (1997) Uses and properties of Citrus flavonoids. J. Agric. Food Chem. 45, 4505-4515. https://doi.org/10.1021/jf970373s
  5. Bendtsen, J. D., Nielsen, H., von Heijne, G. and Brunak, S. (2004) Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783-795. https://doi.org/10.1016/j.jmb.2004.05.028
  6. Betz, C., McCollum, T. G. and Mayer, R. T. (2001) Differential expression of two cinnamate 4-hydroxylase genes in 'Valencia' orange (Citrus sinensis Osbeck). Plant Mol. Biol. 46, 741-748. https://doi.org/10.1023/A:1011625619713
  7. Blom, N., Sicheritz-Ponten, T., Gupta, R., Gammeltoft, S. and Brunak, S. (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4, 1633-1649. https://doi.org/10.1002/pmic.200300771
  8. Cavell, A., Lydiate, D., Parkin, I., Dean, C. and Trick, M. (1998) Collinearity between a 30-centimorgan segment in Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome 41, 62-69. https://doi.org/10.1139/gen-41-1-62
  9. Chapple, C. (1998) Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 311-343. https://doi.org/10.1146/annurev.arplant.49.1.311
  10. Damert, A., Leibiger, B. and Leibiger, I. B. (1996) Dual function of the intron of the rat insulin I gene in regulation of gene expression. Diabetologia 39, 1165-1172. https://doi.org/10.1007/BF02658502
  11. Debeaujon, I., Nesi, N., Perez, P., Devic, M., Grandjean, O., Caboche, M. and Lepiniec, L., (2003) Proanthocyanidinaccumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell 15, 2514-2531. https://doi.org/10.1105/tpc.014043
  12. Di Carlo, G., Mascolo, N., Izzo, A. A. and Capasso, F. (1999) Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci. 65, 337-353. https://doi.org/10.1016/S0024-3205(99)00120-4
  13. Dixon, R. A. and Paiva, N. L. (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7, 1085-1097. https://doi.org/10.1105/tpc.7.7.1085
  14. Dixon, R. A. and Steele, C. L. (1999) Flavonoids and isoflavonoids - a gold mine for metabolic engineering. Trends Plant Sci. 4, 394-400. https://doi.org/10.1016/S1360-1385(99)01471-5
  15. Dixon, R. A., Lamb, C. J., Masoud, S., Sewalt, V. J. H. and Paiva, N. L. (1996) Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses - a review. Gene 179, 61-71. https://doi.org/10.1016/S0378-1119(96)00327-7
  16. Fahrendorf, T. and Dixon, R, A. (1993) Molecular cloning of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome P450 from alfalfa. Arch. Biochem. Biophys. 305, 509-515. https://doi.org/10.1006/abbi.1993.1454
  17. Fourmann, M., Barret, P., Froger, N., Baron, C., Charlot, F., Delourme, R. and Brunel, D. (2002) From Arabidopsis thaliana to Brassica napus: development of amplified consensus genetic markers (ACGM) for construction of a gene map. Theor. Appl. Genet. 105, 1196-1206. https://doi.org/10.1007/s00122-002-1040-z
  18. Frank, M. R., Deyneka, J. M. and Schuler, M. A. (1996) Cloning of wound-induced cytochrome P450 monooxygenases expressed in pea. Plant Physiol. 110, 1035-1046. https://doi.org/10.1104/pp.110.3.1035
  19. Gabriac, B., Werck-Reichhart, D., Teutsch, H. and Durst, F. (1991) Purification and immunocharacterization of a plant cytochrome P450: the cinnamic acid 4-hydroxylase. Arch. Biochem. Biophys. 288, 302-309. https://doi.org/10.1016/0003-9861(91)90199-S
  20. Geourjon, C. and Deleage, G. (1995) SOPMA: Significant improvement in protein secondary structure prediction by consensus prediction from multiple alignments. Cabios 11, 681-684.
  21. Guex, N. and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18, 2714-2723. https://doi.org/10.1002/elps.1150181505
  22. Harakava, R. (2005) Genes encoding enzymes of the lignin biosynthesis pathway in Eucalyptus. Genet. Mol. Biol. 28, 601-607. https://doi.org/10.1590/S1415-47572005000400015
  23. Harborne, J. B. and Williams, C. A. (2000) Advances in flavonoid research since 1992. Phytochemistry 55, 481-504. https://doi.org/10.1016/S0031-9422(00)00235-1
  24. Hasemann, C. A., Kurumbail, R. G., Boddupalli, S. S., Peterson, J. A. and Deisenhofer, J. (1995) Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure 3, 41-62. https://doi.org/10.1016/S0969-2126(01)00134-4
  25. Heneen, W. K. and Brismar, K. (2001) Maternal and embryonal control of seed colour by different Brassica alboglabra chromosomes. Plant Breed. 120, 325-329. https://doi.org/10.1046/j.1439-0523.2001.00614.x
  26. Hofmann, K. and Stoffel, W. (1993) TMbase - A database of membrane spanning proteins segments. Biol. Chem. Hoppe-Seyler 374, 166.
  27. Jaakola, L., Pirttila, A. M., Halonen, M. and Hohtola, A. (2001) Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol. Biotechnol. 19, 201-203. https://doi.org/10.1385/MB:19:2:201
  28. Koopman, E., Logemann, E. and Hahlbrock, K. (1999) Regulation and functional expression of cinnamate 4-hydroxylase from parsley. Plant Physiol. 119, 49-55. https://doi.org/10.1104/pp.119.1.49
  29. Le Marchand, L. (2002) Cancer preventive effects of flavonoids: a review. Biomed. Pharmacother. 56, 296-301. https://doi.org/10.1016/S0753-3322(02)00186-5
  30. Lukens, L., Quijada, P., Udall, J., Pires, J. C., Schranz, M. E. and Osborn, T. C. (2004) Genome redundancy and plasticity within ancient and recent Brassica crop species. Biol. J. Linnean Soc. 82, 665-674. https://doi.org/10.1111/j.1095-8312.2004.00352.x
  31. Lysak, M. A., Berr, A., Pecinka, A., Schmidt, R., McBreen, K. and Schubert, I. (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc. Natl. Acad. Sci. USA 103, 5224-5229. https://doi.org/10.1073/pnas.0510791103
  32. Lysak, M. A., Koch, M. A., Pecinka, A. and Schubert, I. (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res. 15, 516-525. https://doi.org/10.1101/gr.3531105
  33. Madera, M., Vogel, C., Kummerfeld, S. K., Chothia, C. and Gough, J. (2004) The SUPERFAMILY database in 2004: additions and improvements. Nucleic Acids Res. 32, 235-239.
  34. Manthey, J. A., Guthrie, N. and Grohmann, K. (2001) Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr. Med. Chem. 8, 135-153. https://doi.org/10.2174/0929867013373723
  35. Marchler-Bauer, A. and Bryant, S. H. (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32, 327-331. https://doi.org/10.1093/nar/gkh454
  36. Mitaku, S., Hirokawa, T. and Tsuji, T. (2002) Amphiphilicity index of polar amino acids as an aid in the characterization of amino acid preference at membrane-water interfaces. Bioinformatics 18, 608-616. https://doi.org/10.1093/bioinformatics/18.4.608
  37. Mizutani, M., Ohta, D. and Sato, R. (1997) Isolation of a cDNA and a genomic clone encoding cinnamate 4-hydroxylase from Arabidopsis and its expression manner in planta. Plant Physiol. 113, 755-763. https://doi.org/10.1104/pp.113.3.755
  38. Mizutani, M., Ward, E., DiMaio, J., Ohta, D., Ryals, J. and Sato, R. (1993) Molecular cloning and sequencing of a cDNA encoding mung bean cytochrome P450 (P450C4H) possessing cinnamate 4-hydroxylase activity. Biochem. Biophys. Res. Comm. 190, 875-880. https://doi.org/10.1006/bbrc.1993.1130
  39. Nedelkina, S., Jupe, S. C., Blee, K. A., Schalk, M., Werck-Reichhart, D. and Bolwell, G. P. (1999) Novel characteristics and regulation of a divergent cinnamate 4-hydroxylase (CYP73A15) from French bean: engineering expression in yeast. Plant Mol. Biol. 39, 1079-1090. https://doi.org/10.1023/A:1006156216654
  40. Nelson, D. R., Schuler, M. A., Paquette, S. M., Werck-Reichhart, D. and Bak, S. (2004) Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol. 135, 756-772. https://doi.org/10.1104/pp.104.039826
  41. Petersen Brown, R., Berenbaum, M. R. and Schuler, M. A. (2004) Transcription of a lepidopteran cytochrome P450 promoter is modulated by multiple elements in its 5' UTR and repressed by 20-hydroxyecdysone. Insect Mol. Biol. 13, 337-347. https://doi.org/10.1111/j.0962-1075.2004.00486.x
  42. Rechards, E. J. (1995) Preparation and analysis of DNA; in Short Protocol in Molecular Biology, Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. (eds.), pp. 36-38, John Wiley and Sons, New York, USA.
  43. Rupasinghe, S., Baudry, J. and Schuler, M. A. (2003) Common active site architecture and binding strategy of four phenylpropanoid P450s from Arabidopsis thaliana as revealed by molecular modeling. Protein Eng. 16, 721-731. https://doi.org/10.1093/protein/gzg094
  44. Russell, D. W. (1971) The metabolism of aromatic compounds in higher plants. Properties of cinnamic acid 4-hydroxylase of pea seedlings and some aspects of its metabolic and developmental control. J. Biol. Chem. 246, 3870-3778.
  45. Sambrook, J. and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, New York, USA.
  46. Schmidt, R., Acarkan, A., Boivin, K. (2001) Comparative structural genomics in the Brassicaceae family. Plant Physiol. Biochem. 39, 253-262. https://doi.org/10.1016/S0981-9428(01)01239-6
  47. Schoch, G. A., Attias, R., Le Ret, M. and Werck-Reichhart, D. (2003) Key substrate recognition residues in the active site of a plant cytochrome P450, CYP73A1. Homology guided sitedirected mutagenesis. Eur. J. Biochem. 270, 3684-3695. https://doi.org/10.1046/j.1432-1033.2003.03739.x
  48. Seidman, C. E., Struhl, K. and Sheen, J. (1995) Escherichia coli, plasmids, and bacteriophages; in Short Protocols in Molecular Biology, Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. (eds.), pp. 22-24, John Wiley and Sons, New York, USA.
  49. Small, I., Peeters, N., Legeai, F. and Lurin, C. (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4, 1581-1590. https://doi.org/10.1002/pmic.200300776
  50. Takai, D. and Jones, P. A. (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl. Acad. Sci. USA 99, 3740-3745. https://doi.org/10.1073/pnas.052410099
  51. Teutsch, H. G., Hasenfratz, M.-P., Lesot, A., Stoltz, C., Garnier, J.-M., Jeltsch, J.-M., Durst, F. and Werck-Reichhart, D. (1993) Isolation and sequence of a cDNA encoding the Jerusalem artichoke cinnamate-4-hydroxylase, a major plant cytochrome P450 involved in the general phenylpropanoid pathway. Proc. Natl. Acad. Sci. USA 90, 4102-4107. https://doi.org/10.1073/pnas.90.9.4102
  52. Weisshaar, B. and Jenkins, G. I. (1998) Phenylpropanoid biosynthesis and its regulation. Curr. Opin. Plant Biol. 1, 251-257. https://doi.org/10.1016/S1369-5266(98)80113-1
  53. Werck-Reichhart, D., Bak, S. and Paquette, S. (2002) Cytochromes P450; in The Arabidopsis Book, Somerville, C. R. and Meyerowitz, E. M. (eds.), pp. 1-28, American Society of Plant Biologists, Rockville, USA.
  54. Winkel-Shirley, B. (1999) Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiol. Plant. 107, 142-149. https://doi.org/10.1034/j.1399-3054.1999.100119.x

Cited by

  1. Proteomic dissection of plant responses to various pathogens vol.15, pp.9, 2015, https://doi.org/10.1002/pmic.201400384
  2. Molecular and analysis of a phenylalanine ammonia-lyase gene (LrPAL2) from Lycoris radiata vol.40, pp.3, 2013, https://doi.org/10.1007/s11033-012-2310-8
  3. Isolation and Expression Analysis of Two Genes Encoding Cinnamate 4-Hydroxylase from Cotton (Gossypium hirsutum) vol.13, pp.10, 2014, https://doi.org/10.1016/S2095-3119(13)60643-7
  4. Molecular Cloning and Yeast Expression of Cinnamate 4-Hydroxylase from Ornithogalum saundersiae Baker vol.19, pp.2, 2014, https://doi.org/10.3390/molecules19021608
  5. Molecular cloning, expression and characterization of a phenylalanine ammonia-lyase gene (SmPAL1) from Salvia miltiorrhiza vol.36, pp.5, 2009, https://doi.org/10.1007/s11033-008-9266-8
  6. Molecular mechanism of manipulating seed coat coloration in oilseed Brassica species vol.54, pp.2, 2013, https://doi.org/10.1007/s13353-012-0132-y
  7. Isolation and molecular characterization of cinnamate 4-hydroxylase from apricot and plum vol.56, pp.3, 2012, https://doi.org/10.1007/s10535-012-0114-2
  8. Isolation and characterization of a gene encoding cinnamate 4-hydroxylase from Parthenocissus henryana vol.36, pp.6, 2009, https://doi.org/10.1007/s11033-008-9357-6
  9. Molecular cloning and characterization of a phenylalanine ammonia-lyase gene (LrPAL) from Lycoris radiata vol.38, pp.3, 2011, https://doi.org/10.1007/s11033-010-0314-9
  10. ) vol.32, pp.2, 2018, https://doi.org/10.1080/13102818.2017.1418675