Hydroquinone, a Reactive Metabolite of Benzene, Reduces Macrophage-mediated Immune Responses

  • Lee, Ji Yeon (School of Biotechnology and Bioengineering, Kangwon National University) ;
  • Kim, Joo Young (School of Biotechnology and Bioengineering, Kangwon National University) ;
  • Lee, Yong Gyu (School of Biotechnology and Bioengineering, Kangwon National University) ;
  • Shin, Won Cheol (School of Biotechnology and Bioengineering, Kangwon National University) ;
  • Chun, Taehoon (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Rhee, Man Hee (College of Veterinary Medicine, Kyungpook National University) ;
  • Cho, Jae Youl (School of Biotechnology and Bioengineering, Kangwon National University)
  • Received : 2006.11.27
  • Accepted : 2007.01.31
  • Published : 2007.04.30

Abstract

Hydroquinone is a toxic compound and a major benzene metabolite. We report that it strongly inhibits the activation of macrophages and associated cells. Thus, it suppressed the production of proinflammatory cytokines [tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-$1{\beta}$, IL-3, IL-6, IL-10, IL-12p40, IL-23], secretion of toxic molecules [nitric oxide (NO) and reactive oxygen species (ROS)] and the activation and expression of CD29 as judged by cell-cell adhesion and surface staining experiments. The inhibition was due to the induction of heme oxygenase (HO)-1 in LPS-activated macrophages, since blocking HO-1 activity with ZnPP, an HO-1 specific inhibitor, abolished hydroquinone's NO inhibitory activity. In addition, hydroquinone and inhibitors (wortmannin and LY294002) of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway had very similar inhibitory effects on LPS-induced and CD29-mediated macrophage responses, including the phoshorylation of Akt. Therefore, our data suggest that hydroquinone inhibits macrophage-mediated immune responses by modulating intracellular signaling and protective mechanisms.

Keywords

Acknowledgement

Supported by : Kangwon Bio-NURI, Korea Research Foundation

References

  1. Bai, X. C., Lu, D., Liu, A. L., Zhang, Z. M., Li, X. M., et al. (2005) Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast. J. Biol. Chem. 280, 17497−17506
  2. Berberat, P. O., YI, A. R., Yamashita, K., Warny, M. M., Csizmadia, E., et al. (2005) Heme oxygenase-1-generated biliverdin ameliorates experimental murine colitis. Inflamm. Bowel Dis. 11, 350−359
  3. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248− 254
  4. Chen, J. X., Zeng, H., Chen, X., Su, C. Y., and Lai, C. C. (2001) Induction of heme oxygenase-1 by Ginkgo biloba extract but not its terpenoids partially mediated its protective effect against lysophosphatidylcholine-induced damage. Pharmacol. Res. 43, 63−69
  5. Cho, J. Y., Baik, K. U., Jung, J. H., and Park, M. H. (2000) In vitro anti-inflammatory effects of cynaropicrin, a sesquiterpene lactone, from Saussurea lappa. Eur. J. Pharmacol. 398, 399−407
  6. Cho, J. Y., Chain, B. M., Vives, J., Horejsi, V., and Katz, D. R. (2003) Regulation of CD43-induced U937 homotypic aggregation. Exp. Cell Res. 290, 155−167
  7. Cho, J. Y., Fox, D. A., Horejsi, V., Sagawa, K., Skubitz, K. M., et al. (2001) The functional interactions between CD98, beta1-integrins, and CD147 in the induction of U937 homotypic aggregation. Blood 98, 374−382
  8. Cho, J. Y., Skubitz, K. M., Katz, D. R., and Chain, B. M. (2003) CD98-dependent homotypic aggregation is associated with translocation of protein kinase Cdelta and activation of mitogen- activated protein kinases. Exp. Cell Res. 286, 1−11
  9. Cho, J. Y., Kim, A. R., Joo, H. G., Kim, B. H., Rhee, M. H., et al. (2004) Cynaropicrin, a sesquiterpene lactone, as a new strong regulator of CD29 and CD98 functions. Biochem. Biophys. Res. Commun. 313, 954−961
  10. Cruz, M. A., Chen, J., Whitelock, J. L., Morales, L. D., and Lopez, J. A. (2005) The platelet glycoprotein Ib-von Willebrand factor interaction activates the collagen receptor alpha2beta1 to bind collagen: activation-dependent conformational change of the alpha2-I domain. Blood 105, 1986−1991
  11. De Haan, J. B., Crack, P. J., Flentjar, N., Iannello, R. C., Hertzog, P. J., et al. (2003) An imbalance in antioxidant defense affects cellular function: the pathophysiological consequences of a reduction in antioxidant defense in the glutathione peroxidase-1 (Gpx1) knockout mouse. Redox Rep. 8, 69−79
  12. Deisinger, P. J., Hill, T. S., and English, J. C. (1996) Human exposure to naturally occurring hydroquinone. J. Toxicol. Environ. Health. 47, 31−46
  13. Ding, M., Zhang, M., Wong, J. L., Rogers, N. E., Ignarro, L. J., et al. (1998) Antisense knockdown of inducible nitric oxide synthase inhibits induction of experimental autoimmune encephalomyelitis in SJL/J mice. J. Immunol. 160, 2560−2564
  14. Gillissen, A. and Nowak, D. (1998) Characterization of Nacetylcysteine and ambroxol in anti-oxidant therapy. Respir. Med. 92, 609−623
  15. Gracie, J. A., Forsey, R. J., Chan, W. L., Gilmour, A., Leung, B. P., et al. (1999) A proinflammatory role for IL-18 in rheumatoid arthritis. J. Clin. Invest. 104, 1393−1401
  16. Hahn, G., Stuhlmuller, B., Hain, N., Kalden, J. R., Pfizenmaier, K., et al. (1993) Modulation of monocyte activation in patients with rheumatoid arthritis by leukapheresis therapy. J. Clin. Invest. 91, 862−870
  17. Hong, S., Kim, S. H., Rhee, M. H., Kim, A. R., Jung, J. H., et al. (2003) In vitro anti-inflammatory and pro-aggregative effects of a lipid compound, petrocortyne A, from marine sponges. Naunyn. Schmiedebergs Arch. Pharmacol. 368, 448−456
  18. Ibuki, Y. and Goto, R. (2004) Dysregulation of apoptosis by benzene metabolites and their relationships with carcinogenesis. Biochim. Biophys. Acta. 1690, 11−21
  19. Kararli, T. T., Needham, T. E., Griffin, M., Schoenhard, G., Ferro, L. J., et al. (1992) Oral delivery of a renin inhibitor compound using emulsion formulations. Pharm. Res. 9, 888− 893
  20. Kim, A. R., Cho, J. Y., Lee, J. Y., Choi, J. S., and Chung, H. Y. (2005a) Hydroquinone modulates reactivity of peroxynitrite and nitric oxide production. J. Pharm. Pharmacol. 57, 475− 481
  21. Kim, E., Kang, B. Y., and Kim, T. S. (2005b) Inhibition of interleukin- 12 production in mouse macrophages by hydroquinone, a reactive metabolite of benzene, via suppression of nuclear factor-kappaB binding activity. Immunol. Lett. 99, 24−29
  22. Kim, S. D., Park, S. K., Cho, J. Y., Park, H. J., Lim, J. H., et al. (2006) Surfactin C inhibits platelet aggregation. J. Pharm. Pharmacol. 58, 867−870
  23. Lee, T. S., Tsai, H. L., and Chau, L. Y. (2003) Induction of heme oxygenase-1 expression in murine macrophages is essential for the anti-inflammatory effect of low dose 15-deoxy-Delta 12,14-prostaglandin J2. J. Biol. Chem. 278, 19325−19330
  24. Lee, H. J., Hyun, E. A., Yoon, W. J., Kim, B. H., Rhee, M. H., et al. (2006) In vitro anti-inflammatory and anti-oxidative effects of Cinnamomum camphora extracts. J. Ethnopharmacol. 103, 208−216
  25. Ma, Q., Kinneer, K., Ye, J., and Chen, B. J. (2003) Inhibition of nuclear factor kappaB by phenolic antioxidants: interplay between antioxidant signaling and inflammatory cytokine expression. Mol. Pharmacol. 64, 211−219
  26. Mehlman, M. A. (1991) Dangerous and cancer-causing properties of products and chemicals in the oil refining and petrochemical industry: Part I. Carcinogenicity of motor fuels: gasoline. Toxicol. Ind. Health. 7, 143−152
  27. Meroni, P. L., Borghi, M. O., Raschi, E., Ventura, D., Sarzi Puttini, P. C., et al. (2004) Inflammatory response and the endothelium. Thromb. Res. 114, 329−334
  28. Moerloose, K. B., Pauwels, R. A., and Joos, G. F. (2005) Shortterm cigarette smoke exposure enhances allergic airway inflammation in mice. Am. J. Respir. Crit. Care Med. 172, 168−172
  29. Mordente, A., Martorana, G. E., Minotti, G., and Giardina, B. (1998) Antioxidant properties of 2,3-dimethoxy-5-methyl-6- (10-hydroxydecyl)-1,4-benzoquinone (idebenone). Chem. Res. Toxicol. 11, 54−63
  30. Nho, R. S., Xia, H., Kahm, J., Kleidon, J., Diebold, D., et al. (2005) Role of integrin-linked kinase in regulating phosphorylation of Akt and fibroblast survival in type I collagen matrices through a beta1 integrin viability signaling pathway. J. Biol. Chem. 280, 26630−26639
  31. O'Donoghue, J., Barber, E. D., Hill, T., Aebi, J., and Fiorica, L. (1999) Hydroquinone: genotoxicity and prevention of genotoxicity following ingestion. Food. Chem. Toxicol. 37, 931−936
  32. Ozes, O. N., Mayo, L. D., Gustin, J. A., Pfeffer, S. R., Pfeffer, L. M., et al. (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401, 82−85
  33. Pyatt, D. W., Yang, Y., Stillman, W. S., Cano, L. L., and Irons, R. D. (2000) Hydroquinone inhibits PMA-induced activation of NFkappaB in primary human CD19+ B lymphocytes. Cell Biol. Toxicol. 16, 41−51
  34. Rana, S. V. and Verma, Y. (2005) Biochemical toxicity of benzene. J. Environ. Biol. 26, 157−168
  35. Richter, J. and Pfeifer, I. (1993) Influences of the environmental pollution on the immune system: some recent views. Cent. Eur. J. Public Health. 1, 38−40
  36. Savelkoul, H. F. and Neijens, H. J. (2000) Immune responses during allergic sensitization and the development of atopy. Allergy 55, 989−997
  37. Stuhlmuller, B., Ungethum, U., Scholze, S., Martinez, L., Back haus, M., et al. (2000) Identification of known and novel genes in activated monocytes from patients with rheumatoid arthritis. Arthritis Rheum. 43, 775−790
  38. Terasaka, H., Kadoma, Y., Sakagami, H., and Fujisawa, S. (2005) Cytotoxicity and apoptosis-inducing activity of bisphenol A and hydroquinone in HL-60 cells. Anticancer Res. 25, 2241−2247
  39. Xu, J., Li, X., Zhang, P., Li, Z. L., and Wang, Y. (2005) Antiinflammatory constituents from the roots of Smilax bockii warb. Arch. Pharm. Res. 28, 395−399 https://doi.org/10.1007/BF02975131
  40. Yang, C. W., Chen, W. L., Wu, P. L., Tseng, H. Y., and Lee, S. J. (2006) Anti-inflammatory mechanisms of phenanthroindolizidine alkaloids. Mol. Pharmacol. 69, 749−758