넙치 (Paralichthys olivaceus) 열충격 유전자 hsp70 조절부위에 의한 형광단백질의 발현

Expression of GFP Gene Driven by the Olive Flounder (Paralichthys olivaceus) hsc70 Promoter in Trangenic Medaka (Oryzias latipes)

  • 이정호 (국립수산과학원 육종연구센터) ;
  • 김종현 (국립수산과학원 육종연구센터) ;
  • 노재구 (국립수산과학원 육종연구센터) ;
  • 김현철 (국립수산과학원 육종연구센터) ;
  • 김우진 (국립수산과학원 생명공학연구소) ;
  • 김영옥 (국립수산과학원 생명공학연구소) ;
  • 김경길 (국립수산과학원 육종연구센터)
  • Lee, Jeong-Ho (Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Kim, Jong-Hyun (Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Noh, Jae Koo (Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Kim, Hyun Chul (Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Kim, Woo-Jin (Biotechnology Research Institute, National Fisheries Research and Development Institute) ;
  • Kim, Young-Ok (Biotechnology Research Institute, National Fisheries Research and Development Institute) ;
  • Kim, Kyung-Kil (Genetics and Breeding Research Center, National Fisheries Research and Development Institute)
  • 투고 : 2007.10.01
  • 심사 : 2007.11.22
  • 발행 : 2007.12.31

초록

열충격 단백질(hsp)은 세포의 기능에 중요한 역할을 하는 보존성이 높은 단백질중의 하나이다. 이들 중 70 kDa 열충격 단백질은 외부의 자극과 관계없이 상시적으로 합성되는 HSC70 단백질과 외부의 자극에 반응하여 합성되는 HSP70 단백질이 있다. 본 연구에서는 넙치(Paralichthys olivaceus)의 70 kDa 열충격 단백질에 대한 cDNA를 아미노산 서열로 변환시켜 분석함으로써 이 유전자가 상시적으로 발현하는 열충격 단백질인 HSC70에 대한 유전자임을 밝혔다. Hsp70 유전자의 발현 기작을 조사하기 위하여 단백질 발현을 조절하는 5' 인접부위를 분리하고 이들의 염기서열을 분석함으로써 유전자 조절부위의 중요인자와 중심 부위를 동정하였다. 또한 Hsp70 유전자의 유전자 조절부위를 이용하여 형광단백질 발현벡터를 제작한 후 메다카 수정란에 미세 주입하여 배 발생 과정의 살아있는 메다카에서 발현하는 형광 단백질(GFP)의 발현을 조사하였다.

Heat shock proteins (HSPs) are a family of highly conserved proteins playing an important role in the functioning of unstressed and stressed cells. The HSP70 family, the most widely studied of the hsps, is constitutively expressed (hsc70) in unstressed cells and is also induced in response to stressors (hsp70), especially those affecting the protein machinery. The HSP/HSC70 proteins act as molecular chaperones and are crucial for protein functioning, including folding, intracellular localization, regulation, secretion, and protein degradation. Here, we report the identification and characterization of the putative amino acid sequence deduced from one cDNA clone identified as heat shock protein 70. The alignment showed that the putative sequence is 100% identical to the heat shock protein 70 cognate (HSC 70) of olive flounder. The 5'-flanking region sequence (approximately 1 kb) ahead of the hsc70 gene was cloned by genome walking and a putative core promoter region and transcription elements were identified. We characterized the promoter of the olive flounder hsc70 gene by examining the ability of 5'-upstream fragments to drive expression of green fluorescent protein (GFP) in live embryos.

키워드

과제정보

연구 과제 주관 기관 : National Fisheries Research and Development Institute

참고문헌

  1. Arai, A., K. Naruse, H. Mitani and A. Shima. 1995. Cloning and characterization of cDNAs for 70-kDa heat-shock proteins (Hsp70) from two fish species of the genus Oryzias. Jpn. J. Genet., 70 : 423-433 https://doi.org/10.1266/jjg.70.423
  2. Bensaude, O., C. Babinet, M. Morange and F. Jacob. 1983. Heat shock proteins, first major products of zygotic gene activity in mouse embryo. Nature, 305 : 331-333 https://doi.org/10.1038/305331a0
  3. Boorstein, W.R., T. Ziegelhoffer and E.A. Craig. 1994. Molecular evolution of the HSP70 multigene family. J. Mol. Evol., 38 : 1-17
  4. Bukau, B. and A.L. Horwich. 1998. The Hsp70 and Hsp60 chaperone machines. Cell, 92 : 351-366 https://doi.org/10.1016/S0092-8674(00)80928-9
  5. Craig, E.A., T.D. Ingolia and L.J. Manseau. 1983. Expression of Drosophila heat-shock cognate genes during heat shock and development. Dev. Biol., 99 : 418-426 https://doi.org/10.1016/0012-1606(83)90291-9
  6. Dworniczak, B. and M.E. Mirault. 1987. Structure and expression of a human gene coding for a 71 kd heat shock 'cognate' protein. Nucleic Acids Res., 15 : 5181-5197 https://doi.org/10.1093/nar/15.13.5181
  7. Graser, R.T., D. Malnar-Dragojevic and V. Vincek. 1996. Cloning and characterization of a 70-kDa heat shock cognate (hsc70) gene from the zebrafish (Danio rerio). Genetica, 98 : 273-276 https://doi.org/10.1007/BF00057591
  8. Hartl, U.F. 1996. Molecular chaperones in cellular protein folding. Nature, 381 : 571-580 https://doi.org/10.1038/381571a0
  9. Kothary, R.K., D. Jones and E.P. Candido. 1984. 70-kDa heat shock polypeptides from rainbow trout: characterization of cDNA sequences. Mol. Cell Biol., 4 : 1785-1791 https://doi.org/10.1128/MCB.4.9.1785
  10. Lin, S., W. Long, J. Chen and N. Hopkins. 1992. Production of germ-line chimeras in zebrafish by cell transplants from genetically pigmented to albino embryos. Proc. Natl. Acad. Sci. USA, 89 : 4519-4523
  11. Lindquist, S. and E.A. Craig. 1988. The heat-shock proteins. Annu. Rev. Genet., 22 : 631-677 https://doi.org/10.1146/annurev.ge.22.120188.003215
  12. Mayer, M.P. and B. Bukau. 1998. Hsp70 chaperone systems: diversity of cellular functions and mechanism of action. Biol. Chem., 379 : 261-268
  13. Molina, A., F. Biernar, F. Muller, A. Iyengar, P. Prunet, N. Maclean, J.A. Martial and M. Muller. 2000. Cloning and expression analysis of an inducible HSP70 gene from tilapia fish. FEBS Lett., 474 : 5-10 https://doi.org/10.1016/S0014-5793(00)01538-6
  14. Niwa, K., T. Ladygina, M. Kinoshita, K. Ozato and Y. Wakamatsu. 1999. Transplantation of blastula nuclei to non-enucleated eggs in the medaka, Oryzias latipes. Develop. Growth Differ., 41 : 163-172 https://doi.org/10.1046/j.1440-169x.1999.00423.x
  15. Norris, C.E., P.J. di Iorio, R.J. Schultz and L.E. Hightower. Variation in heat shock proteins within tropical and desert species of poeciliid fishes. Mol. Biol. Evol., 12 :1048-1062
  16. Ohsako, S., D. Bunick and Y. Hayashi. 1995. Immunocytochemical observation of the 90 KD heat shock protein (HSP90): high expression in primordial and pre-meiotic germ cells of male and female rat gonads. J. Histochem. Cytochem., 43 : 67-76 https://doi.org/10.1177/43.1.7822767
  17. Paul, C. and A.P. Arrigo. 2000. Comparison of the protective activities generated by two survival proteins: Bcl-2 and Hsp27 in L929 murine fibroblasts exposed to menadione or staurosporine. Exp. Gerontol., 35 : 757-766 https://doi.org/10.1016/S0531-5565(00)00150-9
  18. Place, S.P. and G.E. Hofmann. 2001. Temperature interactions of the molecular chaperone Hsc70 from the eurythermal marine goby Gillichthys mirabilis. J. Exp. Biol., 204 : 2675-2682
  19. Santacruz, H., S. Vriz and N. Angelier. 1997. Molecular characterization of a heat shock cognate cDNA of zebrafish, hsc70, and developmental expression of the corresponding transcripts. Dev. Genet., 21 : 223-233 https://doi.org/10.1002/(SICI)1520-6408(1997)21:3<223::AID-DVG5>3.0.CO;2-9
  20. White, C.N., L.E. Hightower and R.J. Schultz. 1994. Variation in heat-shock proteins among species of desert fishes (Poeciliidae, Poeciliopsis). Mol. Biol. Evol., 11 :106-119
  21. Yang, T. and B.W. Poovaiah. 2002. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J. Biol. Chem., 277 : 45049-45058 https://doi.org/10.1074/jbc.M207941200
  22. Zafarullah, M., J. Wisniewski, N.W. Shworak, S. Schieman, S. Misra and L. Gedamu. 1992. Molecular cloning and characterization of a constitutively expressed heatshock-cognate hsc71 gene from rainbow trout. Eur. J. Biochem., 204 : 893-900 https://doi.org/10.1111/j.1432-1033.1992.tb16709.x