Kinetics of Binding of LPS to Recombinant CD14, TLR4, and MD-2 Proteins

  • Shin, Han Jae (Department of Biochemistry, Chungnam National University) ;
  • Lee, Hayyoung (Institute of Biotechnology, Chungnam National University) ;
  • Park, Jong Dae (KT&G Central Research Institute) ;
  • Hyun, Hak Chul (Department of Biochemistry, Chungnam National University) ;
  • Sohn, Hyung Ok (KT&G Central Research Institute) ;
  • Lee, Dong Wook (KT&G Central Research Institute) ;
  • Kim, Young Sang (Department of Biochemistry, Chungnam National University)
  • Received : 2007.03.08
  • Accepted : 2007.04.16
  • Published : 2007.08.31

Abstract

TLR4 together with CD14 and MD-2 forms a pattern recognition receptor that plays an initiating role in the innate immune response to Gram-negative bacteria. Here, we employed the surface plasmon resonance technique to investigate the kinetics of binding of LPS to recombinant CD14, MD-2 and TLR4 proteins produced in insect cells. The dissociation constants ($K_D$) of LPS for immobilized CD14 and MD-2 were $8.7{\mu}m$, and $2.3{\mu}m$, respectively. The association rate constant ($K_{on}$) of LPS for MD-2 was $5.61{\times}10^3M^{-1}S^{-1}$, and the dissociation rate constant ($K_{off}$) was $1.28{\times}10^2S^{-1}$, revealing slow association and fast dissociation with an affinity constant $K_D$ of $2.33{\times}10^6M$ at $25^{\circ}C$. These affinities are consistent with the current view that CD14 conveys LPS to the TLR4/MD-2 complex.

Keywords

Acknowledgement

Supported by : KT&G Corporation, Korean Research Foundation

References

  1. Akashi, S., Saitoh, S., Wakabayashi, Y., Kikuchi, T., Takamura, N., et al. (2003) Lipopolysaccharide interaction with cell surface Toll-like receptor 4-MD-2: higher affinity than that with MD-2 or CD14. J. Exp. Med. 198, 1035-1042 https://doi.org/10.1084/jem.20031076
  2. Bell, J. K., Mullen, G. E., Leifer, C. A., Mazzoni, A., Davies, D. R., et al. (2003) Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol. 24, 528-533 https://doi.org/10.1016/S1471-4906(03)00242-4
  3. Corr, M., Slanetz, A. E., Boyd, L. F., Jelonek, M. T., Khilko, S., et al. (1994) T cell receptor-MHC class I peptide interactions: affinity, kinetics, and specificity. Science 265, 946-949 https://doi.org/10.1126/science.8052850
  4. da Silva Correia, J., Soldau, K., Christen, U., Tobias, P. S., and Ulevitch, R. J. (2001) Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. transfer from CD14 to TLR4 and MD-2. J. Biol. Chem. 276, 21129-21135 https://doi.org/10.1074/jbc.M009164200
  5. Frey, E. A., Miller, D. S., Jahr, T. G., Sundan, A., Bazil, V., et al. (1992) Soluble CD14 participates in the response of cells to lipopolysaccharide. J. Exp. Med. 176, 1665-1671 https://doi.org/10.1084/jem.176.6.1665
  6. Hailman, E., Lichenstein, H. S., Wurfel, M. M., Miller, D. S., Johnson, D. A., et al. (1994) Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J. Exp. Med. 179, 269-277 https://doi.org/10.1084/jem.179.1.269
  7. Haziot, A., Rong, G. W., Bazil, V., Silver, J., and Goyert, S. M. (1994) Recombinant soluble CD14 inhibits LPS-induced tumor necrosis factor-alpha production by cells in whole blood. J. Immunol. 152, 5868-5876
  8. Hyakushima, N., Mitsuzawa, H., Nishitani, C., Sano, H., Kuronuma, K., et al. (2004) Interaction of soluble form of recombinant extracellular TLR4 domain with MD-2 enables lipopolysaccharide binding and attenuates TLR4-mediated signaling. J. Immunol. 173, 6949-6954 https://doi.org/10.4049/jimmunol.173.11.6949
  9. Janeway, C. A., Jr. (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54 Pt 1, 1-13
  10. Kim, J. I., Lee, C. J., Jin, M. S., Lee, C. H., Paik, S. G., et al. (2005) Crystal structure of CD14 and its implications for lipopolysaccharide signaling. J. Biol. Chem. 280, 11347-11351 https://doi.org/10.1074/jbc.M414607200
  11. Kirkland, T. N., Finley, F., Leturcq, D., Moriarty, A., Lee, J. D., et al. (1993) Analysis of lipopolysaccharide binding by CD14. J. Biol. Chem. 268, 24818-24823
  12. Koraha, J., Tsuneyoshi, N., Kimoto, M., Gauchat, J. F., Nakatake, H., et al. (2005) Comparison of lipopolysaccharide-binding functions of CD14 and MD-2. Clin. Diagn. Lab. Immunol. 12, 1292-1297
  13. Lee, J. Y. and Hwang, D. H. (2006) The modulation of inflammatory gene expression by lipids: mediation through Toll-like receptors. Mol. Cells 21, 174-185
  14. Medzhitov, R., Preston-Hurlburt, P., and Janeway, C. A., Jr. (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394- 397 https://doi.org/10.1038/41131
  15. Moore, R. A., Bates, N. C., and Hancock, R. E. (1986) Interaction of polycationic antibiotics with Pseudomonas aeruginosa lipopolysaccharide and lipid A studied by using dansylpolymyxin. Antimicrob. Agents Chemother. 29, 496-500 https://doi.org/10.1128/AAC.29.3.496
  16. Nagai, Y., Akashi, S., Nagafuku, M., Ogata, M., Iwakura, Y., et al. (2002) Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat. Immunol. 3, 667-672 https://doi.org/10.1038/ni809
  17. Poltorak, A., He, X., Smirnova, I., Liu, M. Y., Van Huffel, C., et al. (1998) Defective LPS signaling in C3H/HeJ and C57BL/ 10ScCr mice: mutations in Tlr4 gene. Science 282, 2085-2088 https://doi.org/10.1126/science.282.5396.2085
  18. Poltorak, A., Ricciardi-Castagnoli, P., Citterio, S., and Beutler, B. (2000) Physical contact between lipopolysaccharide and tolllike receptor 4 revealed by genetic complementation. Proc. Natl. Acad. Sci. USA 97, 2163-2167
  19. Pugin, J., Schurer-Maly, C. C., Leturcq, D., Moriarty, A., Ulevitch, R. J., et al. (1993) Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide- binding protein and soluble CD14. Proc. Natl. Acad. Sci. USA 90, 2744-2748
  20. Pugin, J., Heumann, I. D., Tomasz, A., Kravchenko, V. V., Akamatsu, Y., et al. (1994) CD14 is a pattern recognition receptor. Immunity 1, 509-516 https://doi.org/10.1016/1074-7613(94)90093-0
  21. Qureshi, S. T., Lariviere, L., Leveque, G., Clermont, S., Moore, K. J., et al. (1999) Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med. 189, 615-625 https://doi.org/10.1084/jem.189.4.615
  22. Re, F. and Strominger, J. L. (2002) Monomeric recombinant MD-2 binds toll-like receptor 4 tightly and confers lipopolysaccharide responsiveness. J. Biol. Chem. 277, 23427-23432 https://doi.org/10.1074/jbc.M202554200
  23. Rothbard, J. B. and Gefter, M. L. (1991) Interactions between immunogenic peptides and MHC proteins. Annu. Rev. Immunol. 9, 527-565 https://doi.org/10.1146/annurev.iy.09.040191.002523
  24. Saitoh, S., Akashi, S., Yamada, T., Tanimura, N., Kobayashi, M., et al. (2004) Lipid A antagonist, lipid IVa, is distinct from lipid A in interaction with Toll-like receptor 4 (TLR4)-MD-2 and ligand-induced TLR4 oligomerization. Int. Immunol. 16, 961-969 https://doi.org/10.1093/intimm/dxh097
  25. Shimazu, R., Akashi, S., Ogata, H., Nagai, Y., Fukudome, K., et al. (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 1777-1782 https://doi.org/10.1084/jem.189.11.1777
  26. Takeuchi, O., Hoshino, K., Kawai, T., Sanjo, H., Takada, H., et al. (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443-451 https://doi.org/10.1016/S1074-7613(00)80119-3
  27. Thomas, C. J., Kapoor, M., Sharma, S., Bausinger, H., Zyilan, U., et al. (2002) Evidence of a trimolecular complex involving LPS, LPS binding protein and soluble CD14 as an effector of LPS response. FEBS Lett. 531, 184-188 https://doi.org/10.1016/S0014-5793(02)03499-3
  28. Tobias, P. S., Soldau, K., Gegner, J. A., Mintz, D., and Ulevitch, R. J. (1995) Lipopolysaccharide binding protein-mediated complexation of lipopolysaccharide with soluble CD14. J. Biol. Chem. 270, 10482-10488 https://doi.org/10.1074/jbc.270.18.10482
  29. Vales-Gomez, M., Reyburn, H. T., Mandelboim, M., and Strominger, J. L. (1998) Kinetics of interaction of HLA-C ligands with natural killer cell inhibitory receptors. Immunity 9, 337-344 https://doi.org/10.1016/S1074-7613(00)80616-0
  30. Viriyakosol, S., Mathison, J. C., Tobias, P. S., and Kirkland, T. N. (2000) Structure-function analysis of CD14 as a soluble receptor for lipopolysaccharide. J. Biol. Chem. 275, 3144-3149 https://doi.org/10.1074/jbc.275.5.3144
  31. Viriyakosol, S., Tobias, P. S., Kitchens, R. L., and Kirkland, T. N. (2001) MD-2 binds to bacterial lipopolysaccharide. J. Biol. Chem. 276, 38044-38051
  32. Visintin, A., Mazzoni, A., Spitzer, J. A., and Segal, D. M. (2001) Secreted MD-2 is a large polymeric protein that efficiently confers lipopolysaccharide sensitivity to Toll-like receptor 4. Proc. Natl. Acad. Sci. USA 98, 12156-12161
  33. Visintin, A., Halmen, K. A., Latz, E., Monks, B. G., and Golenbock, D. T. (2005) Pharmacological inhibition of endotoxin responses is achieved by targeting the TLR4 coreceptor, MD-2. J. Immunol. 175, 6465-6472 https://doi.org/10.4049/jimmunol.175.10.6465
  34. Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J., and Mathison, J. C. (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431-1433 https://doi.org/10.1126/science.1698311