Total Length Estimation from Head Dimensions of Artificially Propagated Brown Croaker Miichthys miiuy

양식 민어의 두부형질에 의한 전장 예측

  • Park, In-Seok (Division of Marine Environment and Bioscience, College of Ocean Science and Technology, Korea Maritime University) ;
  • Kim, Young Ja (Research Institute of Marine Science and Technology, Korea Maritime University) ;
  • Choi, Hee Jung (Marine Resources Research Division, Korea Ocean Research and Development Institute) ;
  • Oh, Sung-Young (Marine Resources Research Division, Korea Ocean Research and Development Institute) ;
  • Noh, Choong Hwan (Marine Resources Research Division, Korea Ocean Research and Development Institute) ;
  • Lee, Seung-Hwan (Yeongnam Sea Grant College, Korea Maritime University)
  • 박인석 (한국해양대학교 해양과학기술대학 해양환경.생명과학부) ;
  • 김영자 (한국해양대학교 해양과학기술연구소) ;
  • 최희정 (한국해양연구원 자원연구본부) ;
  • 오승용 (한국해양연구원 자원연구본부) ;
  • 노충환 (한국해양연구원 자원연구본부) ;
  • 이승환 (한국해양대학교 영남 씨그랜트)
  • Received : 2007.04.13
  • Accepted : 2007.05.11
  • Published : 2007.06.30

Abstract

Head length, snout length, postorbital length, and eye diameter were measured in 209 brown croaker, Miichthys miiuy, ranging from 3.0 to 650.0 mm in total length (TL). All of the four head dimensions were regressed against the TL respectively and were increased linearly with the relative size of the head. The determination coefficients ($r^2$) ranged from 0.9823 to 0.9916, and all analysis of variance values were significant (P<0.0001). Those results suggest that these head dimensions may be useful indicators for detecting morphological deformities or for individual and population growth histories to aid in the successful rearing of brown croaker fingerlings.

전장 3.0~650.0 mm의 민어, Miichthys miiuy 209 개체의 두장, 문장, 안와후연장 및 안경을 계측하였다. 측정된 개체들의 모든 두부형질은 전장에 대해 회귀하였고, 머리의 상대크기에 선형으로 증가하였다. 결정계수($r^2$)는 0.9823~0.9916의 범위를 나타내었고, 모두 유의하게 나타났다(P<0.0001). 본 연구에서 사용된 두부형질들은 민어의 성공적인 사육을 위한 개체 및 집단성장사 및 형태 변형을 감지할 수 있는 유용한 지표가 될 수 있으리라 사료된다.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Choi, H.J. 2005. Study on the early growth and gonadogenesis of dark-banded rockfish, Sebastes inermis Cuvier in Korea. Master's Thesis. Korea Maritime University, Busan, Korea, 45pp
  2. Crane, S.A., J.M. Fenaughty and R.W. Gauldie. 1987. The relationship between eye diameter and fork length in the spiny oreo dory, Allocyttus sp. New Zeal. J. Mar. Fresh., 21 : 641-642 https://doi.org/10.1080/00288330.1987.9516269
  3. Dedi, J., T. Takeuchi, T. Seikai, T. Watanabe and K. Hosoya. 1997. Hypervitaminosis A during vertebral morphogenesis in larval Japanese flounder. Fish. Sci., 63 : 466-473 https://doi.org/10.2331/fishsci.63.466
  4. Denson, M.R. and T.I.J. Smith. 1996. Larval rearing and weaning techniques of white bass Morone chrysops. J. World Aquacult. Soc., 27 : 194-201 https://doi.org/10.1111/j.1749-7345.1996.tb00269.x
  5. Han, K.-H., S.-H. O, D.-S. Hwang, Y.-H. Cho and D.-C. Soo. 2002. Egg development and morphological change of larvae of the brown croaker, Miichthys miiuy (in Korean with English abstract). Korean J. Ichthyol., 14 : 93-99
  6. Hard, J.J., B.A. Berejikian, E.P. Tezak, S.L. Schroder, C.M. Knudsen and L.T. Parker. 2000. Evidence for morphometric differentiation of wild and captively reared adult coho salmon: a genometric analysis. Environ. Biol. Fish., 58 : 61-73 https://doi.org/10.1023/A:1007646332666
  7. Hughes, R.N., M.J. Kaiser, P.A. Mackney and K. Warburton. 1992. Optimizing foraging behavior through learning. J. Fish Biol., 41 : 77-91 https://doi.org/10.1111/j.1095-8649.1992.tb03870.x
  8. Kanazawa, A. 1993. Nutritional mechanism involved in the occurrence of abnormal pigmentation in hatchery reared flatfish. J. World Aquacult. Soc., 24 : 162-166 https://doi.org/10.1111/j.1749-7345.1993.tb00005.x
  9. Kinoshita, I. and S. Fujita. 1988. Larvae and juveniles of blue drum, Nibea mitsukuri, occuring in the surf zone of Tosa Bay, Japan. Jap. J. Icthyol., 35 : 25-30
  10. Mann, R.R. and G. Kawamura. 2002. A comparative study on morphological differences in the olfactory system of red sea bream (Pagrus major) and black sea bream (Acanthopagrus schlegeli) from wild and cultured stocks. Aquaculture, 209 : 285-306 https://doi.org/10.1016/S0044-8486(01)00732-3
  11. Neter, J., W. Wasserman and M.H. Kutner. 1985. Applied linear statistical models, 2nd ed. Richard Irwin, Homewood, Illinois
  12. Park, I.-S., D.-W. Seol, S.H. Cho, Y.-C. Song, H.J. Choi, C.H. Noh, J.-G. Myoung and J.-M. Kim. 2006. Morphogenesis of the eye of brown croaker (Miichthys miiuy). Ocean Polar Res., 28 : 287-290 https://doi.org/10.4217/OPR.2006.28.3.287
  13. Russell, F.S. 1976. The eggs and planktonic stages of British marine fishes. Academic Press, London, pp. 523-524
  14. Seo, D.C. 2004. Developmental ecology and early life growth of brown croaker Miichthys miiuy (in Korean). Ph.D Thesis, Yosu National University, Yosu, Korea. 127 pp
  15. Serafy, J.E., C.M. Schmitz, T.R. Capo, M.E. Clarke and J.S. Ault. 1996. Total length estimation of red drum from head dimensions. Prog. Fish-Cult., 58 : 289-290 https://doi.org/10.1577/1548-8640(1996)058<0289:TLEORD>2.3.CO;2
  16. SPSS Inc. 1997. SPSS base 7.5 for window, SPSS Inc., Michigan Avenue Chicago, IL
  17. Takita, T. 1974. Studies on the early life history of Nibea albiflora (Richardson) in ariake sound. Bull. Fish Fac. Nagasaki Univ., 38 : 1-55
  18. Takeshi, T., T. Nasu and O. Ishibashi. 1988. Studies on the seedling production of Japanese croaker Nibea japonica-I. breeding of spawner and egg collection. J. Fish Biol., 35 : 265-270 https://doi.org/10.1111/j.1095-8649.1989.tb02975.x
  19. Taniguchi, N., T. Kuga, Y. Okada and S. Umeda. 1979. Studies of the rearing of artificially-fertilized and early developmental stage of the nibe-croaker, Nibea mitsukurii. Rep. Usa. Mar. Niol. Inst., 1 : 51-58