DOI QR코드

DOI QR Code

RGS Protein Specificity Towards Gq- and Gi/o-Mediated ERK 1/2 and Akt Activation, in vitro

  • Anger, Thomas (Department for Cardiology, Friedrich-Alexander University Erlangen) ;
  • Klintworth, Nils (Department for Cardiology, Friedrich-Alexander University Erlangen) ;
  • Stumpf, Christian (Department for Cardiology, Friedrich-Alexander University Erlangen) ;
  • Daniel, Werner G. (Department for Cardiology, Friedrich-Alexander University Erlangen) ;
  • Mende, Ulrike (Cardiovascular Research Center at Brown Medical School) ;
  • Garlichs, Christoph D. (Department for Cardiology, Friedrich-Alexander University Erlangen)
  • Published : 2007.11.30

Abstract

Extracellular Regulated Kinases (ERK) and Protein Kinase B (Akt) are intermediaries in relaying extracellular growth signals to intracellular targets. Each pathway can become activated upon stimulation of G protein-coupled receptors mediated by $G_q$ and $G_{i/o}$ proteins subjected to regulation by RGS proteins. The goal of the study was to delineate the specificity in which cardiac RGS proteins modulate $G_{q^-}$ and $G_{i/o}$-induced ERK and Akt phosphorylation. To isolate $G_{q^-}$ and $G_{i/o}$-mediated effects, we exclusively expressed muscarinic $M_2$ or $M_3$ receptors in COS-7 cells. Western blot analyses demonstrated increase of phosphorylation of ERK 1.7-/3.3-fold and Akt 2.4-/6-fold in $M_{2^-}/M_{3^-}$ expressing cells through carbachol stimulation. In co-expressions, $M_3/G_q$-induced activation of Akt was exclusively blunted through RGS3s/RGS3, whereas activation of ERK was inhibited additionally through RGS2/RGS5. $M_2/G_{i/o}$ induced Akt activation was inhibited by all RGS proteins tested. RGS2 had no effect on $M_2/G_{i/o}$-induced ERK activation. The high degree of specificity in RGS proteins-depending modulation of $G_{q^-}$ and $G_{i/o}$-mediated ERK and Akt activation in the muscarinic network cannot merely be attributed exclusively to RGS protein selectivity towards $G_q$ or $G_{i/o}$ proteins. Counter-regulatory mechanisms and inter-signaling cross-talk may alter the sensitivity of GPCR-induced ERK and Akt activation to RGS protein regulation.

Keywords

References

  1. Anger, T., Zhang, W. and Mende, U. (2004) Differential contribution of GTPase activation and effector antagonism to the inhibitory Effect of RGS Proteins on Gq-mediated Signaling in vivo. J. Biol. Chem. 279, 3906-3915. https://doi.org/10.1074/jbc.M309496200
  2. Berman, D. M., Kozasa, T. and Gilman, A. G. (1996) The GTPase-activating protein RGS4 stabilizes the transition state for nucleotide hydrolysis. J. Biol. Chem. 271, 27209-27212. https://doi.org/10.1074/jbc.271.44.27209
  3. Blanc, A., Pandey, N. R. and Srivastava, A. K. (2003) Synchronous activation of ERK 1/2, p38mapk and PKB/Akt signaling by $H_2O_2$ in vascular smooth muscle cells: potential involvement in vascular disease (review). Int. J. Mol. Med. 11, 229-234.
  4. Bommakanti, R. K., Vinayak, S. and Simonds, W. F. (2000) Dual regulation of Akt/protein kinase B by heterotrimeric G protein subunits. J. Biol. Chem. 275, 38870-38876. https://doi.org/10.1074/jbc.M007403200
  5. Chang, F., Steelman, L. S., Lee, J. T., Shelton, J. G., Navolanic, P. M., Blalock, W. L., Franklin, R. A. and McCubrey, J. A. (2003b) Signal transduction mediated by the Ras/Raf/MEK/ ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 17, 1263-1293. https://doi.org/10.1038/sj.leu.2402945
  6. Chang, F., Steelman, L. S., Shelton, J. G., Lee, J. T., Navolanic, P. M., Blalock, W. L., Franklin, R. and McCubrey, J. A. (2003c) Regulation of cell cycle progression and apoptosis by the Ras/ Raf/MEK/ERK pathway (Review). Int. J. Oncol. 22, 469-480.
  7. Chatterjee, T. K., Eapen, A. K. and Fisher, R. A. (1997) A truncated form of RGS3 negatively regulates G protein-coupled receptor stimulation of adenylyl cyclase and phosphoinositide phospholipase C. J. Biol. Chem. 272, 15481-15487. https://doi.org/10.1074/jbc.272.24.15481
  8. Chen, C., Zheng, B., Han, J. and Lin, S. C. (1997) Characterization of a novel mammalian RGS protein that binds to Galpha proteins and inhibits pheromone signaling in yeast. J. Biol. Chem. 272, 8679-8685. https://doi.org/10.1074/jbc.272.13.8679
  9. Cladman, W. and Chidiac, P. (2002) Characterization and comparison of RGS2 and RGS4 as GTPase-activating proteins for m2 muscarinic receptor-stimulated G(i). Mol. Pharmacol. 62, 654-659. https://doi.org/10.1124/mol.62.3.654
  10. Crespo, P., Xu, N., Simonds, W. F. and Gutkind, J. S. (1994) Rasdependent activation of MAP kinase pathway mediated by Gprotein beta gamma subunits. Nature 369, 418-420. https://doi.org/10.1038/369418a0
  11. Della Rocca, G. J., van Biesen, T., Daaka, Y., Luttrell, D. K., Luttrell, L. M. and Lefkowitz, R. J. (1997) Ras-dependent mitogen-activated protein kinase activation by G proteincoupled receptors. Convergence of Gi- and Gq-mediated pathways on calcium/calmodulin, Pyk2, and Src kinase. J. Biol. Chem. 272, 19125-19132. https://doi.org/10.1074/jbc.272.31.19125
  12. Dorn, G. W., 2nd and Brown J. H. (1999) Gq signaling in cardiac adaptation and maladaptation. Trends Cardiovasc Med. 9, 26-34. https://doi.org/10.1016/S1050-1738(99)00004-3
  13. Dorn, G. W., 2nd, Tepe, N. M., Lorenz, J. N., Koch, W. J. and Liggett, S. B. (1999) Low- and high-level transgenic expression of beta2-adrenergic receptors differentially affect cardiac hypertrophy and function in Galphaq-overexpressing mice. Proc. Natl. Acad. Sci. USA 96, 6400-6405. https://doi.org/10.1073/pnas.96.11.6400
  14. Druey, K. M., Blumer, K. J., Kang, V. H. and Kehrl, J. H. (1996) Inhibition of G-protein-mediated MAP kinase activation by a new mammalian gene family. Nature 379, 742-746. https://doi.org/10.1038/379742a0
  15. Dulin, N. O., Pratt, P., Tiruppathi, C., Niu, J., Voyno-Yasenetskaya, T. and Dunn, M. J. (2000) Regulator of G protein signaling RGS3T is localized to the nucleus and induces apoptosis. J. Biol. Chem. 275, 21317-21323. https://doi.org/10.1074/jbc.M910079199
  16. Franke, T. F., Hornik, C. P., Segev, L., Shostak, G. A. and Sugimoto, C. (2003) PI3K/Akt and apoptosis: size matters. Oncogene 22, 8983-8998. https://doi.org/10.1038/sj.onc.1207115
  17. Gerthoffer, W. T. and Singer, C. A. (2003) MAPK regulation of gene expression in airway smooth muscle. Respir Physiol. Neurobiol. 137, 237-250. https://doi.org/10.1016/S1569-9048(03)00150-2
  18. Gilman, A. G. (1995) Nobel Lecture. G proteins and regulation of adenylyl cyclase. Biosci. Rep. 15, 65-97. https://doi.org/10.1007/BF01200143
  19. Hao, J., Michalek, C., Zhang, W., Zhu, M., Xu, X. and Mende, U. (2006) Regulation of cardiomyocyte signaling by RGS proteins: differential selectivity towards G proteins and susceptibility to regulation. J. Mol. Cell. Cardiol. 41, 51-61. https://doi.org/10.1016/j.yjmcc.2006.04.003
  20. Hepler, J. R., Berman, D. M., Gilman, A. G. and Kozasa, T. (1997) RGS4 and GAIP are GTPase-activating proteins for Gq alpha and block activation of phospholipase C beta by gammathio- GTP-Gq alpha. Proc. Natl. Acad. Sci. USA 94, 428-432. https://doi.org/10.1073/pnas.94.2.428
  21. Heximer, S. P., Srinivasa, S. P., Bernstein, L. S., Bernard, J. L., Linder, M. E., Hepler, J. R. and Blumer, K. J. (1999) G protein selectivity is a determinant of RGS2 function. J. Biol. Chem. 274, 34253-34259. https://doi.org/10.1074/jbc.274.48.34253
  22. Heximer, S. P., Watson, N., Linder, M. E., Blumer, K. J. and Hepler, J. R. (1997) RGS2/G0S8 is a selective inhibitor of Gqalpha function. Proc. Natl. Acad. Sci. USA 94, 14389-14393. https://doi.org/10.1073/pnas.94.26.14389
  23. Hollinger, S. and Hepler, J. R. (2002) Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol. Rev. 54, 527-559. https://doi.org/10.1124/pr.54.3.527
  24. Igarashi, J., Bernier, S. G. and Michel, T. (2001) Sphingosine 1- phosphate and activation of endothelial nitric-oxide synthase. differential regulation of Akt and MAP kinase pathways by EDG and bradykinin receptors in vascular endothelial cells. J. Biol. Chem. 276, 12420-12426. https://doi.org/10.1074/jbc.M008375200
  25. Jakubik, J. and Wess, J. (1999) Use of a sandwich enzyme-linked immunosorbent assay strategy to study mechanisms of G protein-coupled receptor assembly. J. Biol. Chem. 274, 1349-1358. https://doi.org/10.1074/jbc.274.3.1349
  26. Joseph, J. A., Fisher, D. R. and Strain, J. (2002) Muscarinic receptor subtype determines vulnerability to oxidative stress in COS-7 cells. Free Radic. Biol. Med. 32, 153-161. https://doi.org/10.1016/S0891-5849(01)00779-1
  27. Kardestuncer, T., Wu, H., Lim, A. L. and Neer, E. J. (1998) Cardiac myocytes express mRNA for ten RGS proteins: changes in RGS mRNA expression in ventricular myocytes and cultured atria. FEBS Lett. 438, 285-288. https://doi.org/10.1016/S0014-5793(98)01319-2
  28. Koch, W. J., Hawes, B. E., Inglese, J., Luttrell, L. M. and Lefkowitz, R. J. (1994) Cellular expression of the carboxyl terminus of a G protein-coupled receptor kinase attenuates G beta gamma-mediated signaling. J. Biol. Chem. 269, 6193-6197.
  29. Lee, J. T., Jr. and McCubrey, J. A. (2002) The Raf/MEK/ERK signal transduction cascade as a target for chemotherapeutic intervention in leukemia. Leukemia 16, 486-507. https://doi.org/10.1038/sj.leu.2402460
  30. Leone, A. M., Errico, M., Lin, S. L. and Cowen, D. S. (2000) Activation of extracellular signal-regulated kinase (ERK) and Akt by human serotonin 5-HT(1B) receptors in transfected BE(2)-C neuroblastoma cells is inhibited by RGS4. J. Neurochem. 75, 934-938. https://doi.org/10.1046/j.1471-4159.2000.0750934.x
  31. Matsui, T., Nagoshi, T. and Rosenzweig, A. (2003) Akt and PI 3- kinase signaling in cardiomyocyte hypertrophy and survival. Cell Cycle 2, 220-223.
  32. Melliti, K., Meza, U. and Adams, B. A. (2001) RGS2 blocks slow muscarinic inhibition of N-type Ca(2+) channels reconstituted in a human cell line. J. Physiol. 532, 337-347. https://doi.org/10.1111/j.1469-7793.2001.0337f.x
  33. Murga, C., Laguinge, L., Wetzker, R., Cuadrado, A. and Gutkind, J. S. (1998) Activation of Akt/protein kinase B by G proteincoupled receptors. A role for alpha and beta gamma subunits of heterotrimeric G proteins acting through phosphatidylinositol-3-OH kinasegamma. J. Biol. Chem. 273, 19080-19085. https://doi.org/10.1074/jbc.273.30.19080
  34. Neer, E. J. (1995) Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80, 249-257. https://doi.org/10.1016/0092-8674(95)90407-7
  35. Neri, L. M., Borgatti, P., Capitani, S. and Martelli, A. M. (2002) The nuclear phosphoinositide 3-kinase/AKT pathway: a new second messenger system. Biochim. Biophys. Acta 1584, 73-80. https://doi.org/10.1016/S1388-1981(02)00300-1
  36. Nishida, M., Tanabe, S., Maruyama, Y., Mangmool, S., Urayama, K., Nagamatsu, Y., Takagahara, S., Turner, J. H., Kozasa, T., Kobayashi, H., Sato, Y., Kawanishi, T., Inoue, R., Nagao, T. and Kurose, H. (2005) G alpha 12/13- and reactive oxygen species-dependent activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase by angiotensin receptor stimulation in rat neonatal cardiomyocytes. J. Biol. Chem. 280, 18434-18441. https://doi.org/10.1074/jbc.M409710200
  37. Ogier-Denis, E., Pattingre, S., El Benna, J. and Codogno, P. (2000) Erk1/2-dependent phosphorylation of Galpha-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. J. Biol. Chem. 275, 39090-39095. https://doi.org/10.1074/jbc.M006198200
  38. Rebecchi, M. J. and Pentyala, S. N. (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol. Rev. 80, 1291-1335. https://doi.org/10.1152/physrev.2000.80.4.1291
  39. Reddy, K. B., Nabha, S. M. and Atanaskova, N. (2003) Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev. 22, 395-403. https://doi.org/10.1023/A:1023781114568
  40. Reif, K. and Cyster, J. G. (2000) RGS molecule expression in murine B lymphocytes and ability to down-regulate chemotaxis to lymphoid chemokines. J. Immunol. 164, 4720-4729. https://doi.org/10.4049/jimmunol.164.9.4720
  41. Rhee, S. G. (2001) Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 70, 281-312. https://doi.org/10.1146/annurev.biochem.70.1.281
  42. Ross, E. M. and Wilkie, T. M. (2000) GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu. Rev. Biochem. 69, 795-827. https://doi.org/10.1146/annurev.biochem.69.1.795
  43. Shi, C. S., Lee, S. B., Sinnarajah, S., Dessauer, C. W., Rhee, S. G. and Kehrl, J. H. (2001) Regulator of G-protein signaling 3 (RGS3) inhibits Gbeta1gamma 2-induced inositol phosphate production, mitogen-activated protein kinase activation, and Akt activation. J. Biol. Chem. 276, 24293-24300. https://doi.org/10.1074/jbc.M100089200
  44. Shiojima, I. and Walsh, K. (2002) Role of Akt signaling in vascular homeostasis and angiogenesis. Circ. Res. 90, 1243-1250. https://doi.org/10.1161/01.RES.0000022200.71892.9F
  45. Smalley, K. S. (2003) A pivotal role for ERK in the oncogenic behaviour of malignant melanoma? Int. J. Cancer 104, 527-532. https://doi.org/10.1002/ijc.10978
  46. Snabaitis, A. K., Muntendorf, A., Wieland, T. and Avkiran, M. (2005) Regulation of the extracellular signal-regulated kinase pathway in adult myocardium: differential roles of G(q/11), Gi and G(12/13) proteins in signalling by alpha1-adrenergic, endothelin-1 and thrombin-sensitive protease-activated receptors. Cell Signal. 17, 655-664. https://doi.org/10.1016/j.cellsig.2004.10.008
  47. Steelman, L. S., Pohnert, S. C., Shelton, J. G., Franklin, R. A., Bertrand, F. E. and McCubrey, J. A. (2004) JAK/STAT, Raf/ MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 18, 189-218. https://doi.org/10.1038/sj.leu.2403241
  48. Tibbles, L. A. and Woodgett, J. R. (1999) The stress-activated protein kinase pathways. Cell Mol. Life Sci. 5, 1230-1254.
  49. Vazquez-Prado, J., Casas-Gonzalez, P. and Garcia-Sainz, J. A. (2003) G protein-coupled receptor cross-talk: pivotal roles of protein phosphorylation and protein-protein interactions. Cell Signal 15, 549-557. https://doi.org/10.1016/S0898-6568(02)00151-1
  50. Wang, Q., Liu, M., Mullah, B., Siderovski, D. P. and Neubig, R. R. (2002) Receptor-selective effects of endogenous RGS3 and RGS5 to regulate mitogen-activated protein kinase activation in rat vascular smooth muscle cells. J. Biol. Chem. 277, 24949-24958. https://doi.org/10.1074/jbc.M203802200
  51. Wieland, T. and Mittmann, C. (2003) Regulators of G-protein signalling: multifunctional proteins with impact on signalling in the cardiovascular system. Pharmacol. Ther. 97, 95-115. https://doi.org/10.1016/S0163-7258(02)00326-1
  52. Yan, Y., Chi, P. P. and Bourne, H. R. (1997) RGS4 inhibits Gqmediated activation of mitogen-activated protein kinase and phosphoinositide synthesis. J. Biol. Chem. 272, 11924-11927. https://doi.org/10.1074/jbc.272.18.11924
  53. Zhang, W., Anger, T., Su, J., Hao, J., Xu, X., Zhu, M., Gach, A., Cui, L., Liao, R. and Mende, U. (2006) Selective loss of fine tuning of Gq/11 signaling by RGS2 protein exacerbates cardiomyocyte hypertrophy. J. Biol. Chem. 281, 5811-5820. https://doi.org/10.1074/jbc.M507871200
  54. Zhang, W. and Neer, E. J. (2001) Reassembly of phospholipase Cbeta2 from separated domains: analysis of basal and G proteinstimulated activities. J. Biol. Chem. 276, 2503-2508. https://doi.org/10.1074/jbc.M003562200
  55. Zhang, Y., Neo, S. Y., Han, J., Yaw, L. P. and Lin, S. C. (1999) RGS16 attenuates galphaq-dependent p38 mitogen-activated protein kinase activation by platelet-activating factor. J. Biol. Chem. 274, 2851-2857. https://doi.org/10.1074/jbc.274.5.2851

Cited by

  1. Regulator of G-Protein Signaling–5 Inhibits Bronchial Smooth Muscle Contraction in Severe Asthma vol.46, pp.6, 2012, https://doi.org/10.1165/rcmb.2011-0110OC
  2. Novel signaling pathways promote a paracrine wave of prostacyclin-induced vascular smooth muscle differentiation vol.46, pp.5, 2009, https://doi.org/10.1016/j.yjmcc.2009.01.006
  3. Regulation of G protein-coupled receptor signalling: Focus on the cardiovascular system and regulator of G protein signalling proteins vol.585, pp.2-3, 2008, https://doi.org/10.1016/j.ejphar.2008.02.088
  4. Regulator of G protein signaling 2 (RGS2) deficiency accelerates the progression of kidney fibrosis vol.1842, pp.9, 2014, https://doi.org/10.1016/j.bbadis.2014.06.022
  5. Multiple protein kinases determine the phosphorylated state of the small heat shock protein, HSP27, in SH-SY5Y neuroblastoma cells vol.61, pp.1-2, 2011, https://doi.org/10.1016/j.neuropharm.2011.02.010
  6. Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice 2009, https://doi.org/10.1172/JCI35620
  7. Role of endogenous RGS proteins on endothelial ERK 1/2 activation vol.85, pp.3, 2008, https://doi.org/10.1016/j.yexmp.2008.09.005
  8. The ORF3 protein of porcine circovirus type 2 promotes secretion of IL-6 and IL-8 in porcine epithelial cells by facilitating proteasomal degradation of regulator of G protein signalling 16 through physical interaction vol.96, pp.5, 2015, https://doi.org/10.1099/vir.0.000046
  9. EphrinB2/EphB4 pathway in postnatal angiogenesis: a potential therapeutic target for ischemic cardiovascular disease vol.19, pp.3, 2016, https://doi.org/10.1007/s10456-016-9514-9
  10. Homer3 regulates the establishment of neutrophil polarity vol.26, pp.9, 2015, https://doi.org/10.1091/mbc.E14-07-1197
  11. Peculiar Effects of Muscarinic M1, M2, and M3 Receptor Blockers on Cardiac Chronotropic Function in Neonatal Rats vol.154, pp.1, 2012, https://doi.org/10.1007/s10517-012-1859-5
  12. Statins stimulate RGS-regulated ERK 1/2 activation in human calcified and stenotic aortic valves vol.85, pp.2, 2008, https://doi.org/10.1016/j.yexmp.2008.06.002
  13. The relationship between RGS5 expression and cancer differentiation and metastasis in non-small cell lung cancer vol.105, pp.4, 2012, https://doi.org/10.1002/jso.22033
  14. Regulation of Gβγi-Dependent PLC-β3 Activity in Smooth Muscle: Inhibitory Phosphorylation of PLC-β3 by PKA and PKG and Stimulatory Phosphorylation of Gαi-GTPase-Activating Protein RGS2 by PKG vol.70, pp.2, 2014, https://doi.org/10.1007/s12013-014-9992-6
  15. Possible involvement of self-defense mechanisms in the preferential vulnerability of the striatum in Huntington's disease vol.8, 2014, https://doi.org/10.3389/fncel.2014.00295
  16. The effect of deficient muscarinic signaling on commonly reported biochemical effects in schizophrenia and convergence with genetic susceptibility loci in explaining symptom dimensions of psychosis vol.5, 2014, https://doi.org/10.3389/fphar.2014.00277
  17. Post-cocaine changes in regulator of G-protein signaling (RGS) proteins in the dorsal striatum: Relevance for cocaine-seeking and protein kinase C-mediated phosphorylation vol.70, pp.10, 2016, https://doi.org/10.1002/syn.21917
  18. Pro- and anti-apoptotic dual functions of the C5a receptor: involvement of regulator of G protein signaling 3 and extracellular signal-regulated kinase vol.89, pp.6, 2009, https://doi.org/10.1038/labinvest.2009.27
  19. RGS2 and RGS4 proteins: New modulators of the κ-opioid receptor signaling vol.27, pp.1, 2015, https://doi.org/10.1016/j.cellsig.2014.09.023