Study of Anti-bacterial Properties for Impregnated Activated Carbon by Silver Nano-particles

은나노 입자가 첨착된 활성탄의 항균특성에 관한 연구

  • Lee, Chul-Jae (Division of Chemical Industry, Yeungnam College of Science & Technology) ;
  • Kim, Dong-Yeub (Division of Chemical Industry, Yeungnam College of Science & Technology) ;
  • Kim, Byung-So (Division of Chemical Industry, Yeungnam College of Science & Technology)
  • 이철재 (영남이공대학 화장품.화공계열) ;
  • 김동엽 (영남이공대학 화장품.화공계열) ;
  • 김병소 (영남이공대학 화장품.화공계열)
  • Received : 2007.01.05
  • Accepted : 2007.06.07
  • Published : 2007.08.10

Abstract

In present work, the anti-bacterial effect of silver/activated carbon (Ag/C) composites prepared by the ${\gamma}$-irradiation of $AgNO_3$ solution on Escherichia coli (E. coli) has been studied. Characteristics of the Ag/C composites were identified by scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic absorption spectroscopy (AAS). The inhibitory concentration of E. coli was found to be 0.387 ppm and the sterilizing concentration for the tested organism was 1.017 ppm. These results support the evidence that Ag/C composites have strong antibacterial activity to E. coli.

본 연구에서는 질산은 용액을 감마선 조사에 의하여 은나노 입자를 제조한 후, 이것을 활성탄과 혼합하여 은/활성탄 복합체를 제조하여 대장균에 대한 항균특성을 조사하였다. 제조된 은/활성탄 복합체의 특성은 주사전자현미경, X-선 회절법 그리고 원자흡수분광법에 의해 알아보았다. 은/활성탄 복합체의 대장균에 대한 억제농도는 0.387 ppm으로 나타났으며 대장균에 대한 사멸농도는 1.017 ppm이었다. 이 결과로 은/활성탄 복합체의 대장균에 대한 우수한 항균효과를 확인할 수 있었다.

Keywords

References

  1. S. J. Park and J. B. Donnet, J. Colloid Interface Sci., 200, 46 (1998)
  2. S. J. Park, Interfacial forces and field: Theory and applications ed J. P. Hsu, Marcel Dekker, New York (1999)
  3. R. C. Bansal, J. B. Donnet, and F. Stoeckli, Active carbon, Marcel Dekker, New York (1998)
  4. T. N. Kim, Q. L. Feng, J. O. Kim, J. Wu, H. Wang, G. C. Chen, and F. Z. Cui, J. Mater. Sci. Mater. Med., 9, 129 (1998)
  5. S. Silver, FEMS Microbiology Reviews, 27, 341 (2003) https://doi.org/10.1016/S0168-6445(03)00047-0
  6. S. L. Percival, P. G. Bowler, and D. Russell J Hosp. Infect, 60, 1 (2005) https://doi.org/10.1016/j.jhin.2004.11.014
  7. N. Grier, Silver and Its Compounds, Disinfection, Sterilization and Preservation, 375, Lea and Febiger, Philadelphia (1983)
  8. S. Y. Liau, D. C. Read, W. J. Pugh, J. R. Furr, and A. D. Russell, Lett. Appl. Microbiol., 25, 279 (1997)
  9. R. I. Davies and S. F. Etris, Catalysis Today, 35, 87 (1997)
  10. N. George, J. Faoagali, and M. Muller, Burns, 23, 493 (1997)
  11. J. B Wright, K. Lam, D. Hansen, and R. E. Burrell, Am. J. Infect Control, 27, 344 (1999)
  12. B. Illingworth, R. W. Bianco, and S. Weisberg, J. Heart Valve Dis., 9, 135 (2000)
  13. S. R. Nicewarner-Peña, R. Griffith Freeman, Brian D. Reiss, Lin He, David J. Pena, Ian D. Walton, Remy Cromer, Christine D. Keating, and Michael J. Natan, Science, 294, 137 (2001)
  14. L. Suber, I. Sondi, E. Matijević, and D. V. Goia, J. Colloid Interface Sci., 288, 489 (2005) https://doi.org/10.1016/j.jcis.2005.03.017
  15. M. Gutiėrrez and A. Henglein, J. Phys. Chem., 97, 11368 (1993)
  16. Q. Yang, F. Wang, K. Tang, C. Wang, Z. Chen, and Y. Qian, Mater. Chem. Phys., 78, 495 (2002)
  17. Z. Zhang, B. Zhao, and L. Hu, J. Solid State Chem., 121, 105 (1996)
  18. C. N. J. Wagner and E. N. Aqua, Adv. X-ray Anal., 7, 46 (1964)
  19. T. Fukushima, A. Kosaka, and Y. Ishimura, Science, 300, 2072 (2003) https://doi.org/10.1126/science.1082289