참고문헌
-
Alcantara, E. P., Alzate, O., Lee, M. K., Curtiss, A. and Dean, D. H. (2001) Role of a-helix 7 of Bacillus thuringiensis Cry1Ab
$\delta$ -endotoxin in membrane insertion, structural stability, and ion channel activity. Biochemistry 40, 2540-2547. https://doi.org/10.1021/bi0022240 - Angsuthanasombat, C., Chungjatupornchai, W., Kertbundit, S., Settasatian, C., Luxananil, P., Settasatien, C., Wilairat, P. and Panyim, S. (1987) Cloning and expression of 130-kDa mosquitolarvicidal delta-endotoxin gene of Bacillus thuringiensis var. israelensis in Escherichia coli. Mol. Gen. Genet. 208, 384-389. https://doi.org/10.1007/BF00328128
- Angsuthanasombat, C., Uawithya, P., Leetachewa, S., Pornwiroon, W., Ounjai, P., Kerdcharoen, T., Kartzenmeier, G. R. and Panyim, S. (2004) Bacillus thuringiensis Cry4A and Cry4B mosquito-larvicidal protein: homology based 3D model and implications for toxin activity. J. Biochem. Mol. Biol. 37, 304-313. https://doi.org/10.5483/BMBRep.2004.37.3.304
- Arbuzova, A., Wang, L., Wang, J., Hangyás-Mihályne, G., Murray, D., Honig, B. and Mclaughlin, S. (2000) Membrane binding of peptides containing both basic and aromatic residues: experimental studies with peptides corresponding to the scaffolding region of caveolin and the effector region of MARCKS. Biochemistry 39, 10330-10339. https://doi.org/10.1021/bi001039j
- Becker, N. and Margalit, J. (1993) Use of Bacillus thuringiensis subsp. israelensis against mosquitoes and blackflies; in Bacillus thuringiensis, an Environmental Biopesticide: Theory and Practice, Entwistle, P. F., Cory, J. S., Bailey, M. J. and Higgs, S. (eds.), pp. 147-170, John Wiley and Sons, New York, USA.
- Bemporad, F., Taddei, N., Stefani, M. and Chiti, F. (2006) Assessing the role of aromatic residues in the amyloid aggregation of human muscle acylphosphatase. Protein Sci. 15, 862-870. https://doi.org/10.1110/ps.051915806
- Boonserm, P., Davis, P., Ellar, D. J. and Li, J. (2005) Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J. Mol. Biol. 348, 363-382. https://doi.org/10.1016/j.jmb.2005.02.013
- Boonserm, P., Min, M., Angsuthanasombat, C. and Lescar, J. (2006) Structure of the functional form of the mosquitolarvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8- angstorm resolution. J. Bacteriol. 188, 3391-3401. https://doi.org/10.1128/JB.188.9.3391-3401.2006
- Braun, P. and Von Heijne, G. (1999) The aromatic residues Trp and Phe have different effects on the positioning of a transmembrane helix in the microsomal membrane. Biochemistry 38, 9778-9782. https://doi.org/10.1021/bi990923a
-
Chandra, A., Ghosh, P., Mandaokar, A. D., Bera, A. K., Sharma, R. P., Das, S. and Kumar, P. A. (1999) Amino acid substitution in
$\alpha$ -helix 7 of Cry1Ac delta-endotoxin of Bacillus thuringiensis leads to enhanced toxicity to Helicoverpa armigera Hubner. FEBS Lett. 458, 175-179. https://doi.org/10.1016/S0014-5793(99)01157-6 - De Maagd, R. A., Bravo, A. and Crickmore, N. (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 17, 193-199. https://doi.org/10.1016/S0168-9525(01)02237-5
- Derbyshire, D. J., Ellar, D. J. and Li, J. (2001) Crystallization of the Bacillus thuringiensis toxin Cry1Ac and its complex with the receptor ligand N-acetyl-D-galactosamine. Acta Crystallogr. 57, 1938-1944.
- Drechsler, A., Potrich, C., Sabo, J. K., Frisanco, M., Guella., Della Serra, M., Anderluh, G., Separovic, F. and Norton, R. S. (2006) Structure and activity of the N-terminal region of the eukaryotic cytolysin equinatoxin II. Biochemistry 45, 1818-1828. https://doi.org/10.1021/bi052166o
- Gazit, E., La Rocca, P., Samson, M. S. and Shai, Y. (1998) The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis delta-endotoxin are consistent with an 'umbrella-like' structure of the pore. Proc. Natl. Acad. Sci. USA 95, 12289-12294. https://doi.org/10.1073/pnas.95.21.12289
- Glover, T. and Mitchell, K. (2002). Testing the difference between two means of independent samples; in An Introduction to Biostatistics Glover, T. and Mitchell, K. (eds.), pp. 163-168, McGraw-Hill Higher Education, New York.
-
Gomez, I., Sanchez, J., Miranda, R., Bravo, A., Gill, S. and Soberon, M. (2002) Cadherin-like receptor binding facilitates proteolytic clevage of helix
$\alpha$ -1 in domain I and oligomer prepore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Lett. 513, 242-246. https://doi.org/10.1016/S0014-5793(02)02321-9 - Grochulski, P., Masson, L., Borisova, S., Pusztai-Carey, M., Schwartz, J. L., Brousseau, R. and Cygler, M. (1995) Bacillus thuringiensis Cry1A(a) insecticidal toxin crystal structure and channel formation. J. Mol. Biol. 254, 447-464. https://doi.org/10.1006/jmbi.1995.0630
- Haga, K., Kanai, R., Sakamoto, O., Aoyagi, M., Harata, K. and Yamane, K. (2003) Effects of essential carbohydrate/aromatic stacking interaction with Tyr100 and Phe259 on substrate binding of cyclodextrin glycosyltransferase from alkalophilic Bacillus sp. 1011. J. Biochem. 134, 881-891. https://doi.org/10.1093/jb/mvg215
-
Kanintronkul, Y., Sramala, I., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (2003) Specific mutations within the
$\alpha$ 4-$\alpha$ 5 loop of the Bacillus thuringiensis Cry4B toxin reveal a crucial role of Asn-166 and Tyr-170. Mol. Biotechnol. 24, 11-19. https://doi.org/10.1385/MB:24:1:11 - Kanintronkul, Y., Srikhirin, T., Angsuthanasombat, C. and Kerdcharoen, T. (2005) Insertion behavior of the Bacillus thuringiensis Cry4Ba insecticidal protein into lipid monolayers. Arch. Biochem. Biophys. 442, 180-186. https://doi.org/10.1016/j.abb.2005.08.005
- Knowles, B. H. (1994) Mechanism of action of Bacillus thuringiensis insecticidal delta-endotoxins. Adv. Insect Physiol. 24, 275-308. https://doi.org/10.1016/S0065-2806(08)60085-5
-
Leetachewa, S., Katzenmeier, G. and Angsuthanasombat, C. (2006) Novel preparation and characterisation of the
$\alpha$ 4-loop-$\alpha$ 5 membrane perturbing peptide from the Bacillus thuringiensis Cry4Ba toxin. J. Biochem. Mol. Biol. 39, 270-277. https://doi.org/10.5483/BMBRep.2006.39.3.270 -
Li, J. D., Carroll, J. and Ellar, D. J. (1991) Crystal structure of insecticidal
$\delta$ -endotoxin from Bacillus thuringiensis at 2.5A resolution. Nature 353, 815-821. https://doi.org/10.1038/353815a0 -
Likitvivatanavong, S., Katzenmeier, G. and Angsuthanasombat, C. (2006) Asn183 in
$\alpha$ 5 is essential for oligomerisation and toxicity of the Bacillus thuringiensis Cry4Ba toxin. Arch. Biochem. Biophys. 445, 46-55. https://doi.org/10.1016/j.abb.2005.11.007 - Malovrh, P., Viero, G., Serra, M. D., Podlesek, Z., Lakey, J. H., Macek, P., Menestrina, G. and Anderluh, G. (2003) A novel mechanism of pore formation: membrane penetration by the Nterminal amphipathic region of equinatoxin. J. Biol. Chem. 278, 22678-22685. https://doi.org/10.1074/jbc.M300622200
- Masson, L., Tabashnik, B. E., Liu, Y. B., Brousseau, R. and Schwartz, J. L. (1999) Helix 4 of the Bacillus thuringiensis Cry1Aa toxin lines the lumen of the ion channel. J. Biol. Chem. 274, 31996-32000. https://doi.org/10.1074/jbc.274.45.31996
- Morse, R. J., Yamamoto, T. and Stroud, R. M. (2001) Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 9, 409-417. https://doi.org/10.1016/S0969-2126(01)00601-3
- Nunez-Valdez, M., Sanchez, J., Lina, L., Guereca, L. and Bravo, A. (2001) Structural and functional studies of alpha-helix 5 region from Bacillus thuringiensis Cry1Ab delta-endotoxin. Biochim. Biophys. Acta 1546, 122-131. https://doi.org/10.1016/S0167-4838(01)00132-7
- Padilla, C., Pardo-Lopez, L., De la Riva, G., Gomez, I., Sanchez, J., Hernandez, G., Nunez, M. E., Carey, M. P., Dean, D. H., Alzate, O., Soberon, M. and Bravo, A. (2006) Role of tryptophan residues in toxicity of Cry1Ab toxin from Bacillus thuringiensis. Appl. Environ. Microbiol. 72, 901-907. https://doi.org/10.1128/AEM.72.1.901-907.2006
-
Park, H. W. and Federici, B. A. (2004) Effect of specific mutations in helix
$\alpha$ 7 of domain I on the stability and crystallization. Mol. Biotechnol. 27, 89-100. https://doi.org/10.1385/MB:27:2:089 -
Pornwiroon, W., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (2004) Aromaticity of Tyr-202 in the
$\alpha$ 4-$\alpha$ 5 loop is essential for toxicity of the Bacillus thuringiensis Cry4A toxin. J. Biochem. Mol. Biol. 37, 292-297. https://doi.org/10.5483/BMBRep.2004.37.3.292 -
Puntheeranurak, T., Uawithya, P., Potvin, L., Angsuthanasombat, C. and Schwartz, J. L. (2004) Ion channels formed in planar lipid bilayers by the diptheran-specific Cry4Ba Bacillus thuringiensis and its
$\alpha$ 1-$\alpha$ 5 fragment. Mol. Membr. Biol. 21, 67-74. https://doi.org/10.1080/09687680310001625792 - Rausell, C., Pardo-Lopez, L., Sanchez, J., Munoz-Garay, C., Morera, C., Soberón, M. and Bravo, A. (2004) Unfolding events in the water-soluble monomeric Cry1Ab toxin during transition to oligomeric pre-pore and membrane-inserted pore channel. J. Biol. Chem. 279, 55168-55175. https://doi.org/10.1074/jbc.M406279200
- Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R. and Dean, D. H. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775-806.
- Schwartz, J. L., Juteau, M., Grochulski, P., Cygler, M., Prefontaine, G., Brousseau, R. and Masson, L. (1997) Restriction of intramolecular movements within the Cry1Aa toxin molecule of Bacillus thuringiensis through disulfide bond engineering. FEBS Lett. 410, 397-402. https://doi.org/10.1016/S0014-5793(97)00626-1
- Sramala, I., Leetachewa, S., Krittanai, C., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (2001) Charged residues screening in helix 4 of the Bacillus thuringiensis Cry4B toxin reveals one critical residue for larvicidal activity. J. Biochem. Mol. Biol. Biophys. 5, 219-225.
- Sramala, I., Uawithya, P., Chanama, U., Leetachewa, S., Krittanai, C., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (2000) Single proline substitutions of selected helices of the Bacillus thuringiensis Cry4Ba toxin affect inclusion solubility and larvicidal activity. J. Biochem. Mol. Biol. Biophys. 4, 187-193.
-
Sumandea, M., Das, S., Sumandea, C. and Cho, W. (1999) Roles of aromatic residues in high interfacial activity of Naja naja atra phospholipase
$A_{2}$ Biochemistry 38, 16290-16297. https://doi.org/10.1021/bi9921384 -
Tapaneeyakorn, S., Pornwiroon, W., Katzenmeier, G. and Angsuthanasombat, C. (2005) Structural requirements of the unique disulphide bond and the proline-rich motif within the
$\alpha$ 4-$\alpha$ 5 loop for larvicidal activity of the Bacillus thuringiensis Cry4Aa$\delta$ -endotoxin. Biochem. Biophys. Res. Commun. 330, 519-525 https://doi.org/10.1016/j.bbrc.2005.03.006 - Uawithya, P., Tuntitippawan, T., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (1998) Effects on larvicidal activity of single proline substitutions in alpha 3 or alpha 4 of the Bacillus thuringiensis Cry4B toxin. Biochem. Mol. Biol. Int. 44, 825-832.
- Whalon, M. E. and Wingerd, B. A. (2003) Bt: mode of action and use. Arch. Insect Biochem. Physiol. 54, 200-211. https://doi.org/10.1002/arch.10117
피인용 문헌
- Importance of polarity of the α4–α5 loop residue—Asn166 in the pore-forming domain of the Bacillus thuringiensis Cry4Ba toxin: Implications for ion permeation and pore opening vol.1838, pp.1, 2014, https://doi.org/10.1016/j.bbamem.2013.10.002
- Potential Prepore Trimer Formation by theBacillus thuringiensisMosquito-specific Toxin vol.290, pp.34, 2015, https://doi.org/10.1074/jbc.M114.627554
- Evidence of two mechanisms involved in Bacillus thuringiensis israelensis decreased toxicity against mosquito larvae: Genome dynamic and toxins stability vol.176, 2015, https://doi.org/10.1016/j.micres.2015.04.007
- Bacillus thuringiensis vol.1, pp.1, 2010, https://doi.org/10.4161/bbug.1.1.10519
- CryGetter: a tool to automate retrieval and analysis of Cry protein data vol.17, pp.1, 2016, https://doi.org/10.1186/s12859-016-1207-2
- Lipid-induced conformation of helix 7 from the pore-forming domain of the Bacillus thuringiensis Cry4Ba toxin: Implications for toxicity mechanism vol.482, pp.1-2, 2009, https://doi.org/10.1016/j.abb.2008.11.025