DOI QR코드

DOI QR Code

Structurally Conserved Aromaticity of Tyr249 and Phe264 in Helix 7 Is Important for Toxicity of the Bacillus thuringiensis Cry4Ba Toxin

  • Tiewsiri, Kasorn (Laboratory of Molecular Biophysics and Structural Biochemistry, Institute of Molecular Biology and Genetics, Mahidol University) ;
  • Angsuthanasombat, Chanan (Laboratory of Molecular Biophysics and Structural Biochemistry, Institute of Molecular Biology and Genetics, Mahidol University)
  • Published : 2007.03.31

Abstract

Functional elements of the conserved helix 7 in the poreforming domain of the Bacillus thuringiensis Cry $\delta$- endotoxins have not yet been clearly identified. Here, we initially performed alanine substitutions of four highly conserved aromatic residues, $Trp^{243}$, $Phe^{246}$, $Tyr^{249}$ and $Phe^{264}$, in helix 7 of the Cry4Ba mosquito-larvicidal protein. All mutant toxins were overexpressed in Escherichia coli as 130-kDa protoxins at levels comparable to the wild-type. Bioassays against Stegomyia aegypti mosquito larvae revealed that only W243A, Y249A or F264A mutant toxins displayed a dramatic decrease in toxicity. Further mutagenic analysis showed that replacements with an aromatic residue particularly at $Tyr^{249}$ and $Phe^{264}$ still retained the high-level toxin activity. In addition, a nearly complete loss in larvicidal activity was found for Y249L/F264L or F264A/ Y249A double mutants, confirming the involvement in toxicity of both aromatic residues which face towards the same direction. Furthermore, the Y249L/F264L mutant was found to be structurally stable upon toxin solubilisation and trypsin digestion, albeit a small change in the circular dichroism spectrum. Altogether, the present study provides for the first time an insight into the highly conserved aromaticity of $Tyr^{249}$ and $Phe^{264}$ within helix 7 playing an important role in larvicidal activity of the Cry4Ba toxin.

Keywords

References

  1. Alcantara, E. P., Alzate, O., Lee, M. K., Curtiss, A. and Dean, D. H. (2001) Role of a-helix 7 of Bacillus thuringiensis Cry1Ab $\delta$-endotoxin in membrane insertion, structural stability, and ion channel activity. Biochemistry 40, 2540-2547. https://doi.org/10.1021/bi0022240
  2. Angsuthanasombat, C., Chungjatupornchai, W., Kertbundit, S., Settasatian, C., Luxananil, P., Settasatien, C., Wilairat, P. and Panyim, S. (1987) Cloning and expression of 130-kDa mosquitolarvicidal delta-endotoxin gene of Bacillus thuringiensis var. israelensis in Escherichia coli. Mol. Gen. Genet. 208, 384-389. https://doi.org/10.1007/BF00328128
  3. Angsuthanasombat, C., Uawithya, P., Leetachewa, S., Pornwiroon, W., Ounjai, P., Kerdcharoen, T., Kartzenmeier, G. R. and Panyim, S. (2004) Bacillus thuringiensis Cry4A and Cry4B mosquito-larvicidal protein: homology based 3D model and implications for toxin activity. J. Biochem. Mol. Biol. 37, 304-313. https://doi.org/10.5483/BMBRep.2004.37.3.304
  4. Arbuzova, A., Wang, L., Wang, J., Hangyás-Mihályne, G., Murray, D., Honig, B. and Mclaughlin, S. (2000) Membrane binding of peptides containing both basic and aromatic residues: experimental studies with peptides corresponding to the scaffolding region of caveolin and the effector region of MARCKS. Biochemistry 39, 10330-10339. https://doi.org/10.1021/bi001039j
  5. Becker, N. and Margalit, J. (1993) Use of Bacillus thuringiensis subsp. israelensis against mosquitoes and blackflies; in Bacillus thuringiensis, an Environmental Biopesticide: Theory and Practice, Entwistle, P. F., Cory, J. S., Bailey, M. J. and Higgs, S. (eds.), pp. 147-170, John Wiley and Sons, New York, USA.
  6. Bemporad, F., Taddei, N., Stefani, M. and Chiti, F. (2006) Assessing the role of aromatic residues in the amyloid aggregation of human muscle acylphosphatase. Protein Sci. 15, 862-870. https://doi.org/10.1110/ps.051915806
  7. Boonserm, P., Davis, P., Ellar, D. J. and Li, J. (2005) Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J. Mol. Biol. 348, 363-382. https://doi.org/10.1016/j.jmb.2005.02.013
  8. Boonserm, P., Min, M., Angsuthanasombat, C. and Lescar, J. (2006) Structure of the functional form of the mosquitolarvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8- angstorm resolution. J. Bacteriol. 188, 3391-3401. https://doi.org/10.1128/JB.188.9.3391-3401.2006
  9. Braun, P. and Von Heijne, G. (1999) The aromatic residues Trp and Phe have different effects on the positioning of a transmembrane helix in the microsomal membrane. Biochemistry 38, 9778-9782. https://doi.org/10.1021/bi990923a
  10. Chandra, A., Ghosh, P., Mandaokar, A. D., Bera, A. K., Sharma, R. P., Das, S. and Kumar, P. A. (1999) Amino acid substitution in $\alpha$-helix 7 of Cry1Ac delta-endotoxin of Bacillus thuringiensis leads to enhanced toxicity to Helicoverpa armigera Hubner. FEBS Lett. 458, 175-179. https://doi.org/10.1016/S0014-5793(99)01157-6
  11. De Maagd, R. A., Bravo, A. and Crickmore, N. (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 17, 193-199. https://doi.org/10.1016/S0168-9525(01)02237-5
  12. Derbyshire, D. J., Ellar, D. J. and Li, J. (2001) Crystallization of the Bacillus thuringiensis toxin Cry1Ac and its complex with the receptor ligand N-acetyl-D-galactosamine. Acta Crystallogr. 57, 1938-1944.
  13. Drechsler, A., Potrich, C., Sabo, J. K., Frisanco, M., Guella., Della Serra, M., Anderluh, G., Separovic, F. and Norton, R. S. (2006) Structure and activity of the N-terminal region of the eukaryotic cytolysin equinatoxin II. Biochemistry 45, 1818-1828. https://doi.org/10.1021/bi052166o
  14. Gazit, E., La Rocca, P., Samson, M. S. and Shai, Y. (1998) The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis delta-endotoxin are consistent with an 'umbrella-like' structure of the pore. Proc. Natl. Acad. Sci. USA 95, 12289-12294. https://doi.org/10.1073/pnas.95.21.12289
  15. Glover, T. and Mitchell, K. (2002). Testing the difference between two means of independent samples; in An Introduction to Biostatistics Glover, T. and Mitchell, K. (eds.), pp. 163-168, McGraw-Hill Higher Education, New York.
  16. Gomez, I., Sanchez, J., Miranda, R., Bravo, A., Gill, S. and Soberon, M. (2002) Cadherin-like receptor binding facilitates proteolytic clevage of helix $\alpha$-1 in domain I and oligomer prepore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Lett. 513, 242-246. https://doi.org/10.1016/S0014-5793(02)02321-9
  17. Grochulski, P., Masson, L., Borisova, S., Pusztai-Carey, M., Schwartz, J. L., Brousseau, R. and Cygler, M. (1995) Bacillus thuringiensis Cry1A(a) insecticidal toxin crystal structure and channel formation. J. Mol. Biol. 254, 447-464. https://doi.org/10.1006/jmbi.1995.0630
  18. Haga, K., Kanai, R., Sakamoto, O., Aoyagi, M., Harata, K. and Yamane, K. (2003) Effects of essential carbohydrate/aromatic stacking interaction with Tyr100 and Phe259 on substrate binding of cyclodextrin glycosyltransferase from alkalophilic Bacillus sp. 1011. J. Biochem. 134, 881-891. https://doi.org/10.1093/jb/mvg215
  19. Kanintronkul, Y., Sramala, I., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (2003) Specific mutations within the $\alpha$4-$\alpha$5 loop of the Bacillus thuringiensis Cry4B toxin reveal a crucial role of Asn-166 and Tyr-170. Mol. Biotechnol. 24, 11-19. https://doi.org/10.1385/MB:24:1:11
  20. Kanintronkul, Y., Srikhirin, T., Angsuthanasombat, C. and Kerdcharoen, T. (2005) Insertion behavior of the Bacillus thuringiensis Cry4Ba insecticidal protein into lipid monolayers. Arch. Biochem. Biophys. 442, 180-186. https://doi.org/10.1016/j.abb.2005.08.005
  21. Knowles, B. H. (1994) Mechanism of action of Bacillus thuringiensis insecticidal delta-endotoxins. Adv. Insect Physiol. 24, 275-308. https://doi.org/10.1016/S0065-2806(08)60085-5
  22. Leetachewa, S., Katzenmeier, G. and Angsuthanasombat, C. (2006) Novel preparation and characterisation of the $\alpha$4-loop-$\alpha$5 membrane perturbing peptide from the Bacillus thuringiensis Cry4Ba toxin. J. Biochem. Mol. Biol. 39, 270-277. https://doi.org/10.5483/BMBRep.2006.39.3.270
  23. Li, J. D., Carroll, J. and Ellar, D. J. (1991) Crystal structure of insecticidal $\delta$-endotoxin from Bacillus thuringiensis at 2.5A resolution. Nature 353, 815-821. https://doi.org/10.1038/353815a0
  24. Likitvivatanavong, S., Katzenmeier, G. and Angsuthanasombat, C. (2006) Asn183 in $\alpha$5 is essential for oligomerisation and toxicity of the Bacillus thuringiensis Cry4Ba toxin. Arch. Biochem. Biophys. 445, 46-55. https://doi.org/10.1016/j.abb.2005.11.007
  25. Malovrh, P., Viero, G., Serra, M. D., Podlesek, Z., Lakey, J. H., Macek, P., Menestrina, G. and Anderluh, G. (2003) A novel mechanism of pore formation: membrane penetration by the Nterminal amphipathic region of equinatoxin. J. Biol. Chem. 278, 22678-22685. https://doi.org/10.1074/jbc.M300622200
  26. Masson, L., Tabashnik, B. E., Liu, Y. B., Brousseau, R. and Schwartz, J. L. (1999) Helix 4 of the Bacillus thuringiensis Cry1Aa toxin lines the lumen of the ion channel. J. Biol. Chem. 274, 31996-32000. https://doi.org/10.1074/jbc.274.45.31996
  27. Morse, R. J., Yamamoto, T. and Stroud, R. M. (2001) Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 9, 409-417. https://doi.org/10.1016/S0969-2126(01)00601-3
  28. Nunez-Valdez, M., Sanchez, J., Lina, L., Guereca, L. and Bravo, A. (2001) Structural and functional studies of alpha-helix 5 region from Bacillus thuringiensis Cry1Ab delta-endotoxin. Biochim. Biophys. Acta 1546, 122-131. https://doi.org/10.1016/S0167-4838(01)00132-7
  29. Padilla, C., Pardo-Lopez, L., De la Riva, G., Gomez, I., Sanchez, J., Hernandez, G., Nunez, M. E., Carey, M. P., Dean, D. H., Alzate, O., Soberon, M. and Bravo, A. (2006) Role of tryptophan residues in toxicity of Cry1Ab toxin from Bacillus thuringiensis. Appl. Environ. Microbiol. 72, 901-907. https://doi.org/10.1128/AEM.72.1.901-907.2006
  30. Park, H. W. and Federici, B. A. (2004) Effect of specific mutations in helix $\alpha$7 of domain I on the stability and crystallization. Mol. Biotechnol. 27, 89-100. https://doi.org/10.1385/MB:27:2:089
  31. Pornwiroon, W., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (2004) Aromaticity of Tyr-202 in the $\alpha$4-$\alpha$5 loop is essential for toxicity of the Bacillus thuringiensis Cry4A toxin. J. Biochem. Mol. Biol. 37, 292-297. https://doi.org/10.5483/BMBRep.2004.37.3.292
  32. Puntheeranurak, T., Uawithya, P., Potvin, L., Angsuthanasombat, C. and Schwartz, J. L. (2004) Ion channels formed in planar lipid bilayers by the diptheran-specific Cry4Ba Bacillus thuringiensis and its $\alpha$1-$\alpha$5 fragment. Mol. Membr. Biol. 21, 67-74. https://doi.org/10.1080/09687680310001625792
  33. Rausell, C., Pardo-Lopez, L., Sanchez, J., Munoz-Garay, C., Morera, C., Soberón, M. and Bravo, A. (2004) Unfolding events in the water-soluble monomeric Cry1Ab toxin during transition to oligomeric pre-pore and membrane-inserted pore channel. J. Biol. Chem. 279, 55168-55175. https://doi.org/10.1074/jbc.M406279200
  34. Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R. and Dean, D. H. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775-806.
  35. Schwartz, J. L., Juteau, M., Grochulski, P., Cygler, M., Prefontaine, G., Brousseau, R. and Masson, L. (1997) Restriction of intramolecular movements within the Cry1Aa toxin molecule of Bacillus thuringiensis through disulfide bond engineering. FEBS Lett. 410, 397-402. https://doi.org/10.1016/S0014-5793(97)00626-1
  36. Sramala, I., Leetachewa, S., Krittanai, C., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (2001) Charged residues screening in helix 4 of the Bacillus thuringiensis Cry4B toxin reveals one critical residue for larvicidal activity. J. Biochem. Mol. Biol. Biophys. 5, 219-225.
  37. Sramala, I., Uawithya, P., Chanama, U., Leetachewa, S., Krittanai, C., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (2000) Single proline substitutions of selected helices of the Bacillus thuringiensis Cry4Ba toxin affect inclusion solubility and larvicidal activity. J. Biochem. Mol. Biol. Biophys. 4, 187-193.
  38. Sumandea, M., Das, S., Sumandea, C. and Cho, W. (1999) Roles of aromatic residues in high interfacial activity of Naja naja atra phospholipase $A_{2}$ Biochemistry 38, 16290-16297. https://doi.org/10.1021/bi9921384
  39. Tapaneeyakorn, S., Pornwiroon, W., Katzenmeier, G. and Angsuthanasombat, C. (2005) Structural requirements of the unique disulphide bond and the proline-rich motif within the $\alpha$4-$\alpha$5 loop for larvicidal activity of the Bacillus thuringiensis Cry4Aa $\delta$-endotoxin. Biochem. Biophys. Res. Commun. 330, 519-525 https://doi.org/10.1016/j.bbrc.2005.03.006
  40. Uawithya, P., Tuntitippawan, T., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (1998) Effects on larvicidal activity of single proline substitutions in alpha 3 or alpha 4 of the Bacillus thuringiensis Cry4B toxin. Biochem. Mol. Biol. Int. 44, 825-832.
  41. Whalon, M. E. and Wingerd, B. A. (2003) Bt: mode of action and use. Arch. Insect Biochem. Physiol. 54, 200-211. https://doi.org/10.1002/arch.10117

Cited by

  1. Importance of polarity of the α4–α5 loop residue—Asn166 in the pore-forming domain of the Bacillus thuringiensis Cry4Ba toxin: Implications for ion permeation and pore opening vol.1838, pp.1, 2014, https://doi.org/10.1016/j.bbamem.2013.10.002
  2. Potential Prepore Trimer Formation by theBacillus thuringiensisMosquito-specific Toxin vol.290, pp.34, 2015, https://doi.org/10.1074/jbc.M114.627554
  3. Evidence of two mechanisms involved in Bacillus thuringiensis israelensis decreased toxicity against mosquito larvae: Genome dynamic and toxins stability vol.176, 2015, https://doi.org/10.1016/j.micres.2015.04.007
  4. Bacillus thuringiensis vol.1, pp.1, 2010, https://doi.org/10.4161/bbug.1.1.10519
  5. CryGetter: a tool to automate retrieval and analysis of Cry protein data vol.17, pp.1, 2016, https://doi.org/10.1186/s12859-016-1207-2
  6. Lipid-induced conformation of helix 7 from the pore-forming domain of the Bacillus thuringiensis Cry4Ba toxin: Implications for toxicity mechanism vol.482, pp.1-2, 2009, https://doi.org/10.1016/j.abb.2008.11.025