Synthesis and Characterization of Polyurethane bead/silica Hybrid Composites

폴리우레탄 비드/실리카 복합체의 합성 및 그 특성

  • Yang, Seung Nam (Department of Chemical Engineering, College of Engineering Sungkyunkwan University) ;
  • Yim, Gie Hong (Department of Chemical Engineering, College of Engineering Sungkyunkwan University) ;
  • Kim, Nam Ki (Department of Chemical Engineering, College of Engineering Sungkyunkwan University)
  • 양승남 (성균관대학교 공과대학 화학공학과) ;
  • 임기홍 (성균관대학교 공과대학 화학공학과) ;
  • 김남기 (성균관대학교 공과대학 화학공학과)
  • Received : 2007.05.07
  • Accepted : 2007.07.23
  • Published : 2007.08.10

Abstract

In this study, polyurethane prepolymers were synthesized from polycaprolactonediol (PCDs. M.W. 530, 830, 1000, 1250, and 2000) and polycaprolactonetriol (PCTs. M.W. 300 and 900), and hexamethylenediisocyanate (HMDI). Polyurethane beads was prepared from the different prepolymers by a two-step suspension polymerization. The particle size of polyurethane beads was investigated by particle size analyzer. The beads were $10{\sim}30{\mu}m$ in size. The structure of beads was confirmed by FT-IR spectrometer. Their thermal properties were analyzed by TGA. Glass transition temperatures ($T_g$) of the beads were in the range of $-23{\sim}-53^{\circ}C$ and decreased with the increase of the PCD molecular weight. In order to prevention the cohesion of beads, the beads were coated with tetraethoxysilane (TEOS).

본 연구에서는 분자량이 각각 530, 830, 1000, 1250 그리고 2000인 폴리카프로락톤디올(PCD) 및 분자량이 300과 900인 폴리카프로락톤트리올(PCT)과 헥사메틸렌디이소시아네이트(HMDI)를 이용하여 폴리우레탄 프리폴리머를 중합하였다. 이 프리폴리머들을 2단계 현탁 중합반응을 통하여 폴리우레탄 비드들을 제조하였다. 비드들의 입도는 입도분석기를 이용하여 분석 하였으며, 비드들의 입자직경은 $10{\sim}30{\mu}m$이었다. 중합된 폴리우레탄 비드들의 구조는 FT-IR 스펙트럼 분석으로 확인하였고, TGA를 이용하여 열적 특성을 분석하였다. $T_g$$-23{\sim}-53^{\circ}C$ 범위이고, PCD의 분자량이 증가할수록 폴리우레탄 비드의 $T_g$는 다소 감소하였다. 폴리우레탄의 비드의 응집방지를 위해 테트라에톡시실란(TEOS)로 코팅하여 폴리우레탄 비드/실리카 복합물을 제조하였다.

Keywords

References

  1. B. Otto, Mod. Plast, 24, 149 (1947)
  2. T. Ogoshi, H. Itoh, K. M. Kim, and Y. Chujo, Macromolecules, 35, 334 (2002) https://doi.org/10.1021/ma010819c
  3. X. Shang, Z. K. Zhu, J. Yin, and X. D. Ma, Chem. Mater, 14, 71 (2002) https://doi.org/10.1021/cm010088v
  4. L. Matejka, K. Dusek, J. Plestil, J. Kriz, and F. Lednicky, Polymer, 40, 171 (1998)
  5. Z. H. Huang. and K. Y. Qiu, Polymer, 38, 521 (1997)
  6. Y. Y. Yu, C. Y. Chen, and W. C. Chen, Polymer, 44, 593 (2003) https://doi.org/10.1016/S0032-3861(02)00824-8
  7. S. X. Zhou, L. M. Wu, J. Sun, and W. D. Shen, Prog. Org. Coat, 45, 33 (2002) https://doi.org/10.1016/S0300-9440(02)00085-1
  8. Y. Y. Yu and W. C. Chen, Mater. Chem. Phys, 82, 388 (2003) https://doi.org/10.1016/S0254-0584(03)00259-1
  9. JP. Patent No. 平4-185648 (1992)
  10. Y. Chen and J. O. Iroh, Chem. Mater, 11, 1218 (1999)
  11. U. S. Patent 6, 586, 523 (2003)
  12. J. P. Patent 特開平 8-290106 (1996)
  13. D. J. David and H. B. Staley, Analytical Chemistry of Polyurethane, Wiley-interscience, New York (1969)
  14. Y. C. Chen, S. Zhou, H. Yang, G. Gu, and L. Wu, J. Col. Inter. Sci, 279, 370 (2004) https://doi.org/10.1016/j.jcis.2004.06.074
  15. J. W. Cho and S. H. Lee, Eur. Polym. J, 40, 1343 (2004) https://doi.org/10.1016/j.eurpolymj.2004.01.041
  16. S. M. Kim, N. S. Kwak, Y. K. Yang, B. Y. Park, and T. S. Hwang, Polymer(kor). 29, 253 (2005)
  17. J. B. Lee and K. H. Lee, Elastomer, 40, 37 (2005)
  18. C. H. Cho, H. D. Seo, B. H. Min, H. K. Cho, and S. T. Noh, J. Kor. Ind. Eng. Chem, 13, 825 (2002)
  19. S. G. Kim, M. J. Li, M. T. Ramesan, and D. S. Lee, Polymer (korea), 29, 140 (2005)
  20. G. H. Hsiue, W. J. Kuo, Y. P. Huang, and R. J. Jeng, Polymer, 41, 2813 (2000) https://doi.org/10.1016/S0032-3861(99)00478-4
  21. M. Xiong, B. You, S. Zhou, and L. Wu, Polymer, 45, 2967 (2004) https://doi.org/10.1016/j.polymer.2004.02.043