Genetic Diversity and Spatial Structure in Populations of Abelia tyaihyoni

줄댕강나무 (Abelia tyaihyoni) 집단의 유전다양성 및 공간구조

  • Jeong, Ji-Hee (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Kyu-Sick (Division of Forest Resources Conservation, Korea National Arboretum) ;
  • Lee, Cheul-Ho (Division of Forest Resources Conservation, Korea National Arboretum) ;
  • Kim, Zin-Suh (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
  • 정지희 (고려대학교 생명과학대학 생명공학부) ;
  • 김규식 (국립수목원 산림자원보존과) ;
  • 이철호 (국립수목원 산림자원보존과) ;
  • 김진수 (고려대학교 생명과학대학 생명공학부)
  • Received : 2007.09.10
  • Accepted : 2007.11.27
  • Published : 2007.12.31

Abstract

The genetic diversity and the spatial structure in two populations of Abelia tyaihyoni in Yeongwol region were studied by employing I-SSR markers. In spite of the limited distribution and small population sizes of Abelia tyaihyoni, the amount of genetic diversity estimated at the individual level was comparable to other shrub species (S.I.=0.336, h=0.217). Genetic diversity at the genet level was very similar to that at individual level. (S.l.=0.339, h=0.219). About 18.7 percent of total variation was allocated between two populations, which was slightly higher or similar level as compared with other shrub species. Genotypic diversity estimated by the ratio of the number of genets ($N_G$) over the total number of individuals (N) and a modified Simpson's index ($D_G$) were also higher than those of other shrubs. The maximum diameter of a genet did not exceed 5.5 m. The high level of gene and genotypic diversity, and the relatively limited maximum diameter of a genet suggested that the clonal propagation is not the most dominant factor in determining the population structure of Abelia tyaihyoni. Spatial autocorrelation analysis revealed significant spatial genetic structure within 12 m and 18 m distances in two populations A and B, respectively. Autocorrelations among individuals at the both individual and genet levels in each population didn't show any considerable differences. As a sampling strategy for ex-situ conservation of populations showing continuous distribution, a minimum distance of 18 m between individuals was recommended. For the populations with many segments, it was considered very crucial to sample materials from as many segments as possible.

I-SSR 표지자를 이용하여 영월지역의 줄댕강나무 2개 집단의 유전적 다양성과 공간구조가 조사되었다. 줄댕강나무는 분포가 제한되어있고 집단크기가 작음에도 불구하고 개체 수준에서 추정된 유전변이는 다른 관목류와 유사한 수준으로 판단되었다.(S.I.=0.336, h=0.217). Genet 수준에서 조사된 유전다양성 역시 개체 수준의 값과 큰 차이가 없었다(S.l.=0.339, h=0.219). 전체 유전변이의 약 18.7%가 집단 간 차이로 나타나, 다른 관목류에 비해 다소 높거나 비슷한 수준이었다. $N_G/N$ 값과 Simpson's index로 추정된 유전자형 다양성 역시 다른 관목류에 비해 높았다($N_G/N=0.729$. $D_G=0.988$). 한 genet의 최대직경은 5.5 m로 비교적 작게 나타났다. 높은 수준의 유전자 및 유전자형 다양성과 genet의 작은 직경 크기는, 무성번식이 줄댕강나무 집단의 유전적 구성에 차지하는 비중이 그렇게 크지 않음을 보여주었다. 개체 및 genet 수준에서 큰 차이 없이, 약 12-18 m 거리 내에 분포하는 개체 간에 자기상관성이 인정되었다. 줄댕강나무 집단의 현지외 보전을 위한 표본 추출 시, 연속 분포하는 집단에서는 최소 18m 이상의 간격을 두는 것이 좋고, 소규모 단편으로 분리되어 분포하는 경우 최대한 많은 단편으로부터 표본을 채취하는 것이 효율적일 것으로 판단되었다.

Keywords

Acknowledgement

Supported by : 고려대학교

References

  1. 강범용, 흥경락, 정재민, 흥용표. 2003. I-SSR 표지자를 이용한 치익산 복분자딸기 (Rubus coreanus)의 공간분포 에 따른 유전변이. 한국임학회지 92(6): 558-556
  2. 국립수목원. 2006 사업보고서
  3. 김태진, 선병윤, 서영배. 2001. 광의의 댕강나무속 식물 (인동과)의 화분 및 세포분류학적 연구. 한국식물분류학회지. 31(2): 91-106
  4. 백원기, 이우철 1989. 한국산 댕강나무속 식물의 분류 학적 연구. 한국식물분류학회지 19(3): 139-156
  5. 오병운, 조동광, 김규식, 장창기. 2005. 한반도 특산 관속식물.국립수목원
  6. 최형순, 홍경락, 정재민, 강범용. 2004 한라산 시로미 (Empetrum nigrum var. jaIponicum)의 유전적 다양성 및 공간적 유전구조. 한국임학회지 93(3): 175-180
  7. Albert, T., O. Rasp, and A.-L. Jacquemart. 2003. Clonal structure in Vaccinium myrtillus L. revealed by RAPD and AFLP markers. International Journal of Plant Science 164: 649-655 https://doi.org/10.1086/375373
  8. Bachmann, K. 1994. Molecular markers in plant ecology. New Phytologist 126: 403-418 https://doi.org/10.1111/j.1469-8137.1994.tb04242.x
  9. Berg, E.E. and J.L. Hamrick. 1994. Spatial and genetic structure of two sandhills oaks: Quercus laevis and Quercus margaretta (Fagaceae). American Journal of Botany 81: 7-14 https://doi.org/10.2307/2445556
  10. Chung, M.G., J.M. Chung, M.Y. Chung and B.K. Epperson. 2000. Spatial distribution of allozyme polymorphisms following clonal and sexual reproduction in populations of Rhusjaponica (Anacardiaceae). Heredity 84: 178-185 https://doi.org/10.1046/j.1365-2540.2000.00660.x
  11. Chung, M.G. and B.K. Epperson. 2000. Clonal and spatial genetic structure in Eurya emarginata (Theaceae). Heredity 84: 170-177 https://doi.org/10.1046/j.1365-2540.2000.00644.x
  12. Clark, P.J. and F.C. Evans. 1954. Distance to nearest neighbor as a measure of spatial relationship in populations. Ecology 35: 445-453 https://doi.org/10.2307/1931034
  13. Degen, B. 2000. SGS: spatial genetic software. Computer program and user's manual. http.//kourou.cirad.fr/genetique/ software.html
  14. Degen, B., R. Petit and A. Kremer. 2001. SGS-spatial genetic software: a computer program for analysis of spatial genetic and phenotypic structures of individuals and populations. Journal of Heredity 92: 447-448 https://doi.org/10.1093/jhered/92.5.447
  15. Diniz-Filho, J.A. and M.P.C. Telles. 2002. Spatial autocorrelation analysis and the identification of operational units for conservation in continuous populations. Conservation Biology 16: 924-935 https://doi.org/10.1046/j.1523-1739.2002.00295.x
  16. Doyle, J.J. and J.L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: I 1-15
  17. Escaravage, N., S. Questiau, A. Pornon, B. Doche and P. Taberlet. 1998. Clonal diversity in a Rhododendron ferrugineum L. (Ericaceae) population inferred from AFLP markers. Molecular Ecology 7: 975-982 https://doi.org/10.1046/j.1365-294x.1998.00415.x
  18. Escudero, A., J.M. Irionda and M.E. Torres. 2003. Spatial analysis of genetic diversity as a tool for plant conservation. Biological Conservation 113: 351-365 https://doi.org/10.1016/S0006-3207(03)00122-8
  19. Excoffier, L., L. Guillaume and S. Schneider 2006. Arlequin ver 3.01: An Integrated Software Package for Population Genetics Data Analysis. Computational and Molecular Population Genetics Lab, University of Berne
  20. Excoffier, L., P. Smouse and lM. Quattro. 1992 Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491
  21. Ge, X.-J., Y. Yu, N.-X. Zhao, H.-S. Chen and W-Q. Qi. 2003. Genetic variation in the endangered Inner Mongolia endemic shrub Tetraena mongolica Maxim. (Zygophyllaceae). Biological Conservation 111: 427-434 https://doi.org/10.1016/S0006-3207(02)00312-9
  22. Grashof-Bokdam, C.J., Jansen, J. and Smulders, M.J.M. 1998. Dispersal patterns of Lonicera periclymenum determined by genetic analysis. Molecular Ecology 7: 165-174 https://doi.org/10.1046/j.1365-294x.1998.00327.x
  23. Hoebee, S.E., C. Menn, P. Rotach, R. Finkeldey and R. Holderegger. 2006. Spatial genetic structure of Sorbus torminalis: the extent of clonal reproduction in natural stands of a rare tree species with a scattered distribution. Forest Ecology and Management 226: 1-8 https://doi.org/10.1016/j.foreco.2005.12.024
  24. Hong, Y.-P., M.-J. Kim and K.-N. Hong. 2003a. Genetic diversity in natural populations of two geographic isolates of Korean black raspberry. The Journal of Horticultural Science & Biotechnology 78(3): 350-354 https://doi.org/10.1080/14620316.2003.11511630
  25. Hong, Y.-P., H.-Y. Kwon, Y.-Y. Kim and C.-S. Kim. 2003b. Distribution of I-SSR variants in natural populations of smile rosebay (Rhododendron schlippenbachii Maxim.) in Korea. Journal of Korean Forest Society. 92(5): 497-503
  26. Jin, Z. and J. Li. 2007. Genetic differentiation in endangered Heptacodium miconioides Rehd. based on ISSR polymorphism and implications for its conservation. Forest Ecology and Management 245: 130-136 https://doi.org/10.1016/j.foreco.2007.04.007
  27. Kjo lner, S.. S.M. Sastad, P. Taberlet and C. Brochmann. 2004. Amplified fragment length polymorphic DNA markers: clonal diversity in Saxifraga cernua. Molecular Ecology 13: 81-86 https://doi.org/10.1046/j.1365-294X.2003.02037.x
  28. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the USA 70: 3321-3323
  29. Pielou, C.E. 1969. An introduction to methmetical ecology. Wiley-lnterscience, New York
  30. Shannon, C.E. 1948. A mathematical theory of communication. Bell System Technical Journal 27: 379-423 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  31. Sydes, M.A. and R. Peakall. 1998. Extensive clonality in the endangered shrub Haloragodendron lucasii (Haloragaceae) revealed by allozymes and RAPDs. Molecular Ecology 7: 87-93 https://doi.org/10.1046/j.1365-294x.1998.00314.x
  32. Swensen, S.M., G.J. Allan, M. Howe, W.J. Elisens, S.A. Junak and L.H. Rieseberg. 1995. Genetic analysis of the endangered island endemic Malacothamnus fasciculatus (Nutt.) Greene var. nesioticus (Rob.) Kearn. (Malvaceae). Conservation Biology 9(2): 404-415 https://doi.org/10.1046/j.1523-1739.1995.9020404.x
  33. Yeh, F.C., Yang, R.C. and Boyle, T. 1999. POPGENE. Microsoft window-based freeware for population genetic analysis. Dept. of Renewable Resources. Univ. of Alberta. Edmonton, Alberta. Canada