DOI QR코드

DOI QR Code

Ligand Binding Properties of the N-Terminal Domain of Riboflavin Synthase from Escherichia coli

  • Lee, Chan-Yong (Department of Biochemistry, Chungnam National University) ;
  • Illarionov, Boris (Lehrstuhl fur Organische Chemie und Biochemie, Technische Universitat Munchen) ;
  • Woo, Young-Eun (Department of Biochemistry, Chungnam National University) ;
  • Kemter, Kristina (Lehrstuhl fur Organische Chemie und Biochemie, Technische Universitat Munchen) ;
  • Kim, Ryu-Ryun (Department of Biochemistry, Chungnam National University) ;
  • Eberhardt, Sabine (Lehrstuhl fur Organische Chemie und Biochemie, Technische Universitat Munchen) ;
  • Cushman, Mark (Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University) ;
  • Eisenreich, Wolfgang (Lehrstuhl fur Organische Chemie und Biochemie, Technische Universitat Munchen) ;
  • Fischer, Markus (Lehrstuhl fur Lebensmittelchemie, Universitat Hamburg) ;
  • Bacher, Adelbert (Lehrstuhl fur Organische Chemie und Biochemie, Technische Universitat Munchen)
  • Published : 2007.03.31

Abstract

Riboflavin synthase from Escherichia coli is a homotrimer of 23.4 kDa subunits and catalyzes the formation of one molecule each of riboflavin and 5-amino-6-ribitylamino- 2,4(1H,3H)-pyrimidinedione by the transfer of a 4-carbon moiety between two molecules of the substrate, 6,7- dimethyl-8-ribityllumazine. Each subunit comprises two closely similar folding domains. Recombinant expression of the N-terminal domain is known to provide a $C_2$-symmetric homodimer. In this study, the binding properties of wild type as well as two mutated proteins of N-terminal domain of riboflavin synthase with various ligands were tested. The replacement of the amino acid residue A43, located in the second shell of riboflavin synthase active center, in the recombinant N-terminal domain dimer reduces the affinity for 6,7-dimethyl-8-ribityllumazine. The mutation of the amino acid residue C48 forming part of activity cavity of the enzyme causes significant $^{19}F$ NMR chemical shift modulation of trifluoromethyl derivatives of 6,7-dimethyl-8-ribityllumazine in complex with the protein, while substitution of A43 results in smaller chemical shift changes.

Keywords

References

  1. Allen, F. H., Bird, C. M., Rowland, R. S. and Raithby, P. R. (1997) Hydrogen-bond acceptor and donor properties of divalent sulfur (Y-S-Z and R-S-H). Acta Cryst. 53, 696-701. https://doi.org/10.1107/S0108768197002644
  2. Bacher, A. (1986) Heavy riboflavin synthase from Bacillus subtilis. Methods Enzymol. 122, 192-199. https://doi.org/10.1016/0076-6879(86)22170-9
  3. Bacher, A. (1991) Biosynthesis of flavins; in Chemistry and Biochemistry of Flavoproteins, Muller, F. (ed.) pp. 215-259, Chemical Rubber and Co., Boca Raton, USA.
  4. Bacher, A., Eberhardt, S. and Richter, G. (1996) Biosynthesis of riboflavin; in Escherichia coli and Salmonella, Neidhard, F. C. (ed.), pp. 657-664, American Society for Microbiology, Washington, USA.
  5. Cushman, M., Patel, H. H., Bacher, A. and Scheuring, J. (1991) Synthesis of epimeric 6,7-bis(trifluoromethyl-8-ribityl)lumazine hydrates. Stereoselective interaction with the light riboflavin synthase of Bacillus subtilis. J. Org. Chem. 56, 4603-4608. https://doi.org/10.1021/jo00015a009
  6. Cushman, M., Patel, H. H., Scheuring, J. and Bacher, A. (1992) $^{19}F$ NMR studies on the mechanism of riboflavin synthase. Synthesis of 6-(trifluoromethyl)-7-oxo-8-(D-ribityl)lumazine and 6-(trifluoromethyl)-7-methyl-8-(D-ribityl)lumazine. J. Org. Chem. 57, 5630-5643. https://doi.org/10.1021/jo00047a015
  7. Eberhardt, S., Zingler, N., Kemter, K., Richter, G., Gimbel, W., Cushman, M. and Bacher, A. (2001) Domain structure of riboflavin synthase. Eur. J. Biochem. 268, 4315-4323. https://doi.org/10.1046/j.1432-1327.2001.02351.x
  8. Fischer, M., Schott, A. K., Kemter, K., Feicht, R., Richter, G., Illarionov, B., Eisenreich, W., Gerhardt, S., Cushman, M., Steinbacher, S., Huber, R. and Bacher, A. (2003) Riboflavin synthase of Schizosaccharomyces pombe. Protein dynamics revealed by $^{19}F$ NMR protein perturbation experiments. BMC Biochem. 4, 1-18. https://doi.org/10.1186/1471-2091-4-1
  9. Gerhardt, S., Schott, A., Kairies, N., Cushman, M., Illarionov, B., Eisenreich, W., Bacher, A., Huber, R., Steinbacher, S. and Fischer, M. (2002) Studies on the reaction mechanism of riboflavin synthase X-ray crystal structure of a complex with 6-carboxyethyl-7-oxo-8-ribityllumazine. Structure 10, 1371-1381. https://doi.org/10.1016/S0969-2126(02)00864-X
  10. Harvey, R. A. and Plaut, G. W. E. (1966) Riboflavin synthetase from yeast. Properties of complexes of the enzyme with lumazine derivatives and riboflavin. J. Biol. Chem. 242, 2120-2130.
  11. Illarionov, B., Kempter, K., Eberhardt, S., Richter, G., Cushman, M. and Bacher, A. (2001) Riboflavin synthase of Escherichia coli. Effect of single amino acid substitution on reaction rate and ligand binding properties. J. Biol. Chem. 276, 11524-11530. https://doi.org/10.1074/jbc.M008931200
  12. Liao, D. I., Wawrzak, Z., Calabrese, J. C., Vitanen, P. V. and Jordan, D. B. (2001) Crystal structure of riboflavin synthase. Structure 9, 399-408. https://doi.org/10.1016/S0969-2126(01)00600-1
  13. Meining, W., Eberhardt, S., Bacher, A. and Ladenstein, R. (2003) The structure of the N-terminal domain of riboflavin synthase in complex with riboflavin at 2.6 A resolution. J. Mol. Biol. 331, 1053-1063. https://doi.org/10.1016/S0022-2836(03)00844-1
  14. O'Kane, D. J. and Lee, J. (1985) Physical characterization of lumazine proteins from Photobacterium. Biochemistry 12, 1467-1475.
  15. O'Kane, D. J., Woodward, B., Lee, J. and Prasher, D. C. (1991) Borrowed proteins in bacterial bioluminescence. Proc. Natl. Acad. Sci. USA 88, 1100-1104. https://doi.org/10.1073/pnas.88.4.1100
  16. Plaut, G. W. E., Beach, R. L. and Aogaichi, T. (1970) Studies on the mechanism of elimination of protons from the methyl groups of 6,7-dimethyl-8-ribyllumazine by riboflavin synthetase. Biochemistry 9, 771-785. https://doi.org/10.1021/bi00806a010
  17. Scheuring, J., Lee, J., Cushman, M., Patel, H., Patrick, D. A. and Bacher, A. (1994a) (Trifluoromethyl)lumazine derivative as $^{19}F$ NMR probes for lumazine protein. Biochemistry 33, 7634-7640. https://doi.org/10.1021/bi00190a017
  18. Scheuring, J., Lee, J., Cushman, M., Oschkinat, H. and Bacher, A. (1994b) $^{19}F$ NMR studies on lumazine protein from Photobacterium phosphoreum; in Flavins and Flavoprotein, Yagi, K. (ed.) pp. 75-78, Walter de Gruyter, Berlin, Germany.
  19. Scheuring, J., Fischer, M., Cushman, M., Lee, J., Bacher, A. and Oschkinat, H. (1996) NMR analysis of site-specific ligand binding in oligomeric protein. Dynamic studies on the interaction of riboflavin synthase with trifluoromethyl-substituted intermediates. Biochemistry 35, 9637-9646. https://doi.org/10.1021/bi9600916
  20. Schott, K., Kellerman, J., Lottspeich, F. and Bacher, A. (1990) Riboflavin synthase of Bacillus subtilis. Purification and amino acid sequence of the alpha subunit. J. Biol. Chem. 265, 4204-4209.
  21. Stuber, D., Matile, H. and Garotta, G. (1990) System for high level production in Escherichia coli and rapid purification of recombinant proteins. Application to epitope mapping, preparation of antibodies, and structure function analysis; in Immunological Methods IV, Lefkovits, I. and Pernis, P. (eds.), pp. 121-152, Academic Press, Orlando, USA.
  22. Takemura, H., Kotoku, M., Yasutake, M. and Shinmyozu, T. (2004) 9-Fluoro-18-hydroxy [3,3]metacyclophane: synthesis and estimation of a C-F-H-O hydrogen bond. Eur. J. Org. Chem. 69, 2019-2024.
  23. Truffault, V., Coles, M., Diercks, T., Abelmann, K., Eberhardt, S., Luttgen, H., Bacher, H., and Kessler, H. (2001) The solution structure of the N-terminal domain of riboflavin synthase. J. Mol. Biol. 309, 949-960. https://doi.org/10.1006/jmbi.2001.4683
  24. Zamenhof, P. J. and Villarejo, M. (1972) Construction and properties of Escherichia coli strains exhibiting complementation of galactosidase fragments in vivo. J. Bacteriol. 110, 171-178.

Cited by

  1. Spectrofluorometric Properties of N-Terminal Domain of Lumazine Protein from Photobacterium leiognathi vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1673
  2. Construction, Expression, and Purification of N-Terminal Variants of Lumazine Protein from Photobacterium leiognathi vol.49, pp.2, 2013, https://doi.org/10.7845/kjm.2013.3022