MCM-41 촉매 상에서 일본 낙엽송으로부터 생성된 바이오 오일의 접촉 개질 반응

Catalytic Upgrading of Bio-oil Produced from Japanese Larch over MCM-41

  • 박현주 (서울시립대학교 환경공학부) ;
  • 전종기 (공주대학교 화학공학부) ;
  • 정경열 (공주대학교 화학공학부) ;
  • 고영수 (공주대학교 화학공학부) ;
  • 손정민 (전북대학교 자원에너지 공학과) ;
  • 박영권 (서울시립대학교 환경공학부)
  • Park, Hyun Ju (Faculty of Environmental Engineering, University of Seoul) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University) ;
  • Jung, Kyeong Youl (Department of Chemical Engineering, Kongju National University) ;
  • Ko, Young Soo (Department of Chemical Engineering, Kongju National University) ;
  • Sohn, Jung Min (Department of Mineral Resource & Energy Eng., Chonbuk National University) ;
  • Park, Young-Kwon (Faculty of Environmental Engineering, University of Seoul)
  • 투고 : 2007.03.22
  • 심사 : 2007.04.06
  • 발행 : 2007.08.31

초록

MCM-41 촉매를 이용하여 일본 낙엽송의 열분해 바이오 오일의 촉매 개질 반응을 수행하였다. MCM-41 촉매는 바이오 오일의 불안정성의 원인중 하나인 산소를 $H_2O$, CO, $CO_2$의 형태로 제거하여 개질 전의 오일보다 더 안정한 오일을 생성하였다. MCM-41 촉매는 무촉매 반응에 비해 경제적 가치가 높은 페놀류 화합물의 생성량을 증가시켰다. 특히 Si-MCM-41 촉매에 비해 산점의 양이 많은 Al-MCM-41의 경우 촉매 활성이 더 우수하였다. 또한 촉매와 일본 낙엽송을 직접 혼합한 것보다, 바이오 오일이 촉매층을 통과했을 때 더 나은 개질 결과를 얻을 수 있었다.

Catalytic upgrading of pyrolytic bio-oil produced from Japanes Larch was carried out over MCM-41 catalyst. Oil with enhanced stability was produced by the MCM-41 catalyst due to transform oxygen known as a main cause for the instability of bio-oil into $H_2O$, CO and $CO_2$. In addition, the MCM-41 catalyst produced the larger amount of phenolic compounds in the pyrolytic bio-oil product compared with that in the bio-oil produced without catalyst. Especially, the catalytic activity of Al-MCM-41 for the bio-oil upgrading was higher than that of Si-MCM-41 because Al-MCM-41 has the larger amount of acid sites. Also, the better reforming result was obtained when pyrolytic bio-oil vapor passed through catalytic layer rather than Japanese Larch was mixed with catalyst directly.

키워드

과제정보

연구 과제 주관 기관 : 환경부

참고문헌

  1. Klass, D. L., Biomass for Renewable Energy, Fuels and Chemicals, Academic Press, San Diego(1998)
  2. Demirbas, A., 'Biomass Resource Facilities and Biomass Conversion Processing for Fuels and Chemicals,' Energy Conservation & Management, 42(11), 1357-1378(2001) https://doi.org/10.1016/S0196-8904(00)00137-0
  3. McKendry, P., 'Energy Production from Biomass(part 1): Overview of Biomass,' Bioresource Technology, 83(1), 37-46(2002) https://doi.org/10.1016/S0960-8524(01)00118-3
  4. EUREC Agency. The future for renewable energy, prospects and directions. James and James Science Publishers, London(1996)
  5. Ahuja, P., Singh, P. C., Upadhyay, S. N. and Kumar, S., 'Kinetics of Biomass and Sewage Sludge Pyrolysis: Thermogravimetric and Sealed Reactor Studies,' Indian J. Chem. Tech., 3(6), 306-312(1996)
  6. Fisher, T., Hajaligol, M., Waymack, B. and Kellogg, K., 'Pyrolysis Behavior and Kinetics of Biomass Derived Materials,' J. Anal. Appl. Pyrol., 62(2), 331-349(2002) https://doi.org/10.1016/S0165-2370(01)00129-2
  7. Blasi, C. D., Signorelli, G., Russo, C. D. and Rea, G., 'Product Distribution from Pyrolysis of Wood and Agricultural Residues,' Ind. Eng. Chem. Res., 38(6), 2216-2224(1999) https://doi.org/10.1021/ie980711u
  8. Caballero, J. A., Conesa, J. A., Font, R. and Marcilla, A., 'Pyrolysis Kinetics of Almond Shells and Olive Stones Considering Their Organic Fractions,' J. Anal. Appl. Pyrol., 42(2), 159-175(1997) https://doi.org/10.1016/S0165-2370(97)00015-6
  9. Zanzi, R., Sjostrom, K. and Bjornbom, E., 'Rapid high-temperature Pyrolysis of Biomass in a Free-fall Reactor,' Fuel, 75(5), 545-550(1996) https://doi.org/10.1016/0016-2361(95)00304-5
  10. Savova, D., Apak, E., Ekinci, E., Yardim, F., Petrov, N. and Budinova, T., 'Biomass Conversion to Carbon Adsorbents and Gas,' Bioenergy, 21(2), 133-142(2001)
  11. Meier, D. and Faix, O., 'State of the Art of Applied Fast Pyrolysis of Lignocellulosic Materials,' Bioresource Technol, 68(1), 71-77(1999) https://doi.org/10.1016/S0960-8524(98)00086-8
  12. Bridgwater, A. V. and Bridge, S. A., in: A. V. Bridgwater G. Grassi, (Eds.), A Review of Biomass Pyrolysis and Pyrolysis Technologies: Biomass Pyrolysis Liquids, Upgrading and Utilization, London, Elsevier Applied Science, 227-242(1991)
  13. Vitolo, S., Bresci, B., Seggiani, M. and Gallo, M. G., 'Catalytic Upgrading of Pyrolytic Oils over HZSM-5 Zeolite: Behaviour of the Catalyst When Used in Repeated Upgrading–regenerating Cycles,' Fuel, 80(1), 17-26(2001) https://doi.org/10.1016/S0016-2361(00)00063-6
  14. Ryoo, R. and Kim, J. M., 'Generalized Route to the Preparation of Mesoporous Metallosilicates Via Post-synthetic Metal Implantation,' Chem. Commun., 1997(22), 2225-2226(1997)
  15. Oasmaa, A., Leppamaki, E., Koponen, P., Levander, J. and Tapola, E., Physical characterization of biomass-based pyrolysis liquids-Application of standard fuel oil analyses, VTT Publications, ESPOO(1997)
  16. Myung, S. Y., 'A Study on the Recovery of Valuable Liquid Products from Wood Biomass by Fast Pyrolysis Process,' Ph. D. Thesis, The Univ. of Seoul, Seoul(2005)
  17. Jeon, J. K., Park, Y. K., Kim, S., Kim, S. S., Yim, J. H. and Sohn J. M., 'Catalytic Degradation of Polyethylene by Al-MCM-41: Comparison of Post-synthetic Metal Grafting and Direct Sol-gel Synthesis Methods,' J. Ind. Eng. Chem., 13(2), 176-181(2007)
  18. Park, H. J., Park, Y. K., Kim., J. S., Jeon, J. K., Yoo, K. S., Yim, J. H., Jung, J. and Sohn, J. M., 'Bio-oill Upgrading over Ga Modified Zeolites in a Bubbling Fluidized Bed Reactor,' Stud. Surf. Sci. Catal., 159, 553-556(2006) https://doi.org/10.1016/S0167-2991(06)81656-3