열플라즈마에 의한 클로로메탄의 분해

Decomposition of Chlorinated Methane by Thermal Plasma

  • 김정숙 (인하대학교 화학공학과/열프라즈마환경기술연구센터) ;
  • 박동화 (인하대학교 화학공학과/열프라즈마환경기술연구센터)
  • Kim, Zhen Shu (Department of Chemical Engineering/RIC for Environmental Technology of Thermal plasma, Inha University) ;
  • Park, Dong Wha (Department of Chemical Engineering/RIC for Environmental Technology of Thermal plasma, Inha University)
  • 투고 : 2006.12.15
  • 심사 : 2007.02.20
  • 발행 : 2007.04.10

초록

본 연구에서는 열플라즈마를 이용하여 클로로메탄 즉 사염화탄소($CCl_4$), 삼염화탄소($CCl_3H$), 이염화탄소($CCl_2H_2$)를 분해하는 실험을 수행하였으며 열플라즈마분해공정의 특성에 대한 연구를 진행하였다. Factsage program을 이용하여 열역학적 평형조성을 알아보았으며, 또한 Gas chromatography를 이용하여 농도, 캐리어 가스의 유량 및 quenching 속도등 세가지 변수의 변화에 따른 분해율을 살펴보았다. 실험 결과 92%이상의 높은 분해율을 얻었다. FT-IR을 이용하여 최종 생성물을 확인한 결과 중성 분위기에서는 주로 카본, 염소, 염화수소가 생성되었고 산화 분위기에서는 카본의 생성이 억제되었으며 주로 이산화탄소, 염화수소, 염소가 생성되었다. FT-IR생성물에 대한 분석과 Factsage program에 의한 온도 분포 별 생성된 라디칼 및 기타 입자의 종류와 결부하여 이에 따른 분해 메커니즘에 대해 알아보았다. 분해 경로는 주로 라디칼에 의한 산화반응과 전자 부착에 의한 분해 반응으로 이루어짐을 확인하였다.

The decomposition of chlorinated methanes including $CCl_4$, $CCl_3H$, and $CCl_2H_2$ was carried out using a thermal plasma process and the characteristics of the process were investigated. The thermal equilibrium composition was analyzed with temperature by Fcatsage program. The decomposition rates at various process parameters including the concentration of reactants, flow rate of carrier gas, and quenching rate, were evaluated, where sufficiently high conversion over 92% was achieved. The generation of main products was strongly influenced by the reaction atmosphere; carbon, chlorine, and hydrogen chloride at neutral condition; carbon dioxide, chlorine, and hydrogen chloride at oxidative condition. The decomposition mechanism was speculated considering the results from Factsage and the identification of generated radicals and ionic species. The main decomposition pathways were found to be dissociative electron attachment and oxidative by radicals formed in a plasma state.

키워드

과제정보

연구 과제 주관 기관 : 산업자원부

참고문헌

  1. R. Benocci, R. Florio, A. Galassi, M. Paolicchio, and E. Sindoni, Il Nuovo Cimento, 19, 911 (1997)
  2. T. H. Lee and K. J. Hong, Korean J. Sanitan,tio, 11, 1028 (1966)
  3. Y. S. Ko and G. S. Yang, Journal of the Air & Waste Management Association, 53, 204 (2003)
  4. Katalin A. Foglein, Pal T. Szabo, Irina Z. Babievskaya, and Janos Szepvolgyi1, Plasma chem. Plasma process, 25, 275 (2005) https://doi.org/10.1007/s11090-004-3040-z
  5. Katalin A. Foglein, Pál T. Szabó, András Dombi2, and János Szépvo lgyi, Plasma Chem. Plasma process, 23, 227 (2003)
  6. D. W. Park and S. M. Oh, Thermal plasma processing and application, publishing Department of Inha University (2004)
  7. T. K and T. T, Plasma chem. Plasma process, 23, 118 (2003)
  8. H. K-song, Toxicological and Environmental Chemistry, 23, 2061 (2006)
  9. Factsage version 5.4, GTT-Technologies, Germany
  10. http://www.qub.ac.uk/schools/SchoolofMathematicsand Physics/ampr/ tfield/dea.html
  11. Y. K. Park, Master's Thesis, Published of Inha University (2005)
  12. http://www.cheric.org/research/kdb/hcprop/showcoef.php? cmpid=1508=pvp
  13. Chemdraw software program
  14. C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, Spectrochimica Acta Part B, 61, 2 (2006) https://doi.org/10.1016/j.sab.2005.10.003
  15. S. A. Vitale, K. Hadidi, D. R. Cohn, and L. Bromberg, J.Appl.Phys. 81, 2863 (1997) https://doi.org/10.1063/1.364190
  16. J.-I. Dong and K. D. Yoon, Korean J.Chem Eng. 16(4), 501 (1999)