DOI QR코드

DOI QR Code

Biochemical Characterization of Exoribonuclease Encoded by SARS Coronavirus

  • Chen, Ping (State Key Laboratory of Virology and The Modern Virology Research Centre, College of Life Sciences, Wuhan University) ;
  • Jiang, Miao (State Key Laboratory of Virology and The Modern Virology Research Centre, College of Life Sciences, Wuhan University) ;
  • Hu, Tao (State Key Laboratory of Virology and The Modern Virology Research Centre, College of Life Sciences, Wuhan University) ;
  • Liu, Qingzhen (State Key Laboratory of Virology and The Modern Virology Research Centre, College of Life Sciences, Wuhan University) ;
  • Chen, Xiaojiang S. (Department of Molecular and Computational Biology, University of Southern California) ;
  • Guo, Deyin (State Key Laboratory of Virology and The Modern Virology Research Centre, College of Life Sciences, Wuhan University)
  • 발행 : 2007.09.30

초록

The nsp14 protein is an exoribonuclease that is encoded by severe acute respiratory syndrome coronavirus (SARS-CoV). We have cloned and expressed the nsp14 protein in Escherichia coli, and characterized the nature and the role(s) of the metal ions in the reaction chemistry. The purified recombinant nsp14 protein digested a 5'-labeled RNA molecule, but failed to digest the RNA substrate that is modified with fluorescein group at the 3'-hydroxyl group, suggesting a 3'-to-5' exoribonuclease activity. The exoribonuclease activity requires $Mg^{2+}$ as a cofactor. Isothermal titration calorimetry (ITC) analysis indicated a two-metal binding mode for divalent cations by nsp14. Endogenous tryptophan fluorescence and circular dichroism (CD) spectra measurements showed that there was a structural change of nsp14 when binding with metal ions. We propose that the conformational change induced by metal ions may be a prerequisite for catalytic activity by correctly positioning the side chains of the residues located in the active site of the enzyme.

키워드

참고문헌

  1. Astrom, J., Astrom, A. and Virtanen, A. (1992) Properties of a HeLa cell 3' exonuclease specific for degrading poly(A) tails of mammalian mRNA. J. Biol. Chem. 267, 18154-18159.
  2. Barzilay, G., Mol, C. D., Robson, C. N., Walker, L. J., Cunningham, R. P., Tainer, J. A. and Hickson, I. D. (1995) Identification of critical active-site residues in the multifunctional human DNA repair enzyme HAP1. Nat. Struct. Biol. 2, 561-568. https://doi.org/10.1038/nsb0795-561
  3. Beese, L. S. and Steitz, T. A. (1991) Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. Embo J. 10, 25-33.
  4. Caruccio, N. and Ross, J. (1994) Purification of a human polyribosome-associated 3' to 5' exoribonuclease. J. Biol. Chem. 269, 31814-31821.
  5. Chekanova, J. A., Dutko, J. A., Mian, I. S. and Belostotsky, D. A. (2002) Arabidopsis thaliana exosome subunit AtRrp4p is a hydrolytic 3'-->5' exonuclease containing S1 and KH RNAbinding domains. Nucleic Acids Res. 30, 695-700. https://doi.org/10.1093/nar/30.3.695
  6. de Cardayre, S. B. and Raines, R. T. (1994) Structural determinants of enzymatic processivity. Biochemistry 33, 6031-6037. https://doi.org/10.1021/bi00186a001
  7. Doublie, S., Tabor, S., Long, A. M., Richardson, C. C. and Ellenberger, T. (1998) Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature 391, 251-258. https://doi.org/10.1038/34593
  8. Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H. R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L., Fouchier, R. A., Berger, A., Burguiere, A. M., Cinatl, J., Eickmann, M., Escriou, N., Grywna, K., Kramme, S., Manuguerra, J. C., Muller, S., Rickerts, V., Sturmer, M., Vieth, S., Klenk, H. D., Osterhaus, A. D., Schmitz, H. and Doerr, H. W. (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967-1976. https://doi.org/10.1056/NEJMoa030747
  9. Fouchier, R. A., Kuiken, T., Schutten, M., van Amerongen, G., van Doornum, G. J., van den Hoogen, B. G., Peiris, M., Lim, W., Stohr, K. and Osterhaus, A. D. (2003) Aetiology: Koch's postulates fulfilled for SARS virus. Nature 423, 240. https://doi.org/10.1038/423240a
  10. Hammes-Schiffer, S. (2002) Impact of enzyme motion on activity. Biochemistry 41, 13335-13343. https://doi.org/10.1021/bi0267137
  11. Hartwig, A. (2001) Role of magnesium in genomic stability. Mutat. Res. 475, 113-121. https://doi.org/10.1016/S0027-5107(01)00074-4
  12. Huang, H., Chopra, R., Verdine, G. L. and Harrison, S. C. (1998). Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282, 1669-1675. https://doi.org/10.1126/science.282.5394.1669
  13. Hussain, S., Pan, J., Chen, Y., Yang, Y., Xu, J., Peng, Y., Wu, Y., Li, Z., Zhu, Y., Tien, P. and Guo, D. (2005) Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J. Virol. 79, 5288-5295. https://doi.org/10.1128/JVI.79.9.5288-5295.2005
  14. Ksiazek, T. G., Erdman, D., Goldsmith, C. S., Zaki, S. R., Peret, T., Emery, S., Tong, S., Urbani, C., Comer, J. A., Lim, W., Rollin, P. E., Dowell, S. F., Ling, A. E., Humphrey, C. D., Shieh, W. J., Guarner, J., Paddock, C. D., Rota, P., Fields, B., DeRisi, J., Yang, J. Y., Cox, N., Hughes, J. M., LeDuc, J. W., Bellini, W. J. and Anderson, L. J. (2003) A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953-1966. https://doi.org/10.1056/NEJMoa030781
  15. Lai, M. M. C. (1996) Recombination in large RNA viruses: coronaviruses. Semin. Virol. 7, 381-388. https://doi.org/10.1006/smvy.1996.0046
  16. Marra, M. A., Jones, S. J., Astell, C. R., Holt, R. A., Brooks-Wilson, A., Butterfield, Y. S., Khattra, J., Asano, J. K., Barber, S. A., Chan, S. Y., Cloutier, A., Coughlin, S. M., Freeman, D., Girn, N., Griffith, O. L., Leach, S. R., Mayo, M., McDonald, H., Montgomery, S. B., Pandoh, P. K., Petrescu, A. S., Robertson, A. G., Schein, J. E., Siddiqui, A., Smailus, D. E., Stott, J. M., Yang, G. S., Plummer, F., Andonov, A., Artsob, H., Bastien, N., Bernard, K., Booth, T. F., Bowness, D., Czub, M., Drebot, M., Fernando, L., Flick, R., Garbutt, M., Gray, M., Grolla, A., Jones, S., Feldmann, H., Meyers, A., Kabani, A., Li, Y., Normand, S., Stroher, U., Tipples, G. A., Tyler, S., Vogrig, R., Ward, D., Watson, B., Brunham, R. C., Krajden, M., Petric, M., Skowronski, D. M., Upton, C. and Roper, R. L. (2003) The Genome sequence of the SARS-associated coronavirus. Science 300, 1399-1404.⨀뢊⨀⨀ᢋ⨀䢋⨀碋⨀ꢋ⨀?⨀ࢌ⨀㢌⨀梌⨀颌⨀좌⨀⨀⢍⨀墍⨀袍⨀뢍⨀裇⨀㢾⨀⨀₅?棆⨀ꡰﺖ⨀쀅?⨀ĀЀ馁糖₅?꣆⨀袁ﺖ⨀쀅?⨀ĀЀ馁糖₅?ࣇ⨀梒ﺖ⨀쀅?⨀ĀЀ馁糖ĀĀ僙ᬀĀ죌⨀㢾⨀탊⨀⨀฀ᄂ考暺Ȁ暺Ȁ̀￿￿￿￿䡼⨀ĀĀ฀較暺Ȁ暺Ȁ̀￿￿Ā⨀倀椌돀႗⨀堘?⨀냗⨀䄌돐탗⨀??⨀?⨀ᤌ덐⨀᠌܀較܀較܀฀ᄂ考暺Ȁ暺Ȁ̀￿￿䣊⨀ၦ│僅﾿缀㢒㾑ĀĀ턄돀梼⨀堘?⨀㣑⨀꤄돐⤎돀㢗⨀堘?⨀ https://doi.org/10.1126/science.1085953
  17. Miller, W. A. and Koev, G. (2000) Synthesis of subgenomic RNAs by positive-strand RNA viruses. Virology 273, 1-8. https://doi.org/10.1006/viro.2000.0421
  18. Minskaia, E., Hertzig, T., Gorbalenya, A. E., Campanacci, V., Cambillau, C., Canard, B. and Ziebuhr, J. (2006) Discovery of an RNA virus 3'->5' exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc. Natl. Acad. Sci. USA 103, 5108-5113. https://doi.org/10.1073/pnas.0508200103
  19. Peiris, J. S., Lai, S. T., Poon, L. L., Guan, Y., Yam, L. Y., Lim, W., Nicholls, J., Yee, W. K., Yan, W. W., Cheung, M. T., Cheng, V. C., Chan, K. H., Tsang, D. N., Yung, R. W., Ng, T. K. and Yuen, K. Y. (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319-1325. https://doi.org/10.1016/S0140-6736(03)13077-2
  20. Plchova, H., Hartung, F. and Puchta, H. (2003) Biochemical characterization of an exonuclease from Arabidopsis thaliana reveals similarities to the DNA exonuclease of the human Werner syndrome protein. J. Biol. Chem. 278, 44128-44138. https://doi.org/10.1074/jbc.M303891200
  21. Rota, P. A., Oberste, M. S., Monroe, S. S., Nix, W. A., Campagnoli, R., Icenogle, J. P., Penaranda, S., Bankamp, B., Maher, K., Chen, M. H., Tong, S., Tamin, A., Lowe, L., Frace, M., DeRisi, J. L., Chen, Q., Wang, D., Erdman, D. D., Peret, T. C., Burns, C., Ksiazek, T. G., Rollin, P. E., Sanchez, A., Liffick, S., Holloway, B., Limor, J., McCaustland, K., Olsen-Rasmussen, M., Fouchier, R., Gunther, S., Osterhaus, A. D., Drosten, C., Pallansch, M. A., Anderson, L. J. and Bellini, W. J. (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394-1399.ㄌ돀ࡣ⨀堘?⨀롻⨀ऌ돐?⨀??⨀⨀덐⨀쀋 https://doi.org/10.1126/science.1085952
  22. Ruan, Y. J., Wei, C. L., Ee, A. L., Vega, V. B., Thoreau, H., Su, S. T., Chia, J. M., Ng, P., Chiu, K. P., Lim, L., Zhang, T., Peng, C. K., Lin, E. O., Lee, N. M., Yee, S. L., Ng, L. F., Chee, R. E., Stanton, L. W., Long, P. M. and Liu, E. T. (2003) Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection. Lancet 361, 1779-1785. https://doi.org/10.1016/S0140-6736(03)13414-9
  23. Sirover, M. A. and Loeb, L. A. (1977) On the fidelity of DNA replication. Effect of metal activators during synthesis with avian myeloblastosis virus DNA polymerase. J. Biol. Chem. 252, 3605-3610.
  24. Sissi, C., Marangon, E., Chemello, A., Noble, C. G., Maxwell, A. and Palumbo, M. (2005) The effects of metal ions on the structure and stability of the DNA gyrase B protein. J. Mol. Biol. 353, 1152-1160. https://doi.org/10.1016/j.jmb.2005.09.043
  25. Snijder, E. J., Bredenbeek, P. J., Dobbe, J. C., Thiel, V., Ziebuhr, J., Poon, L. L., Guan, Y., Rozanov, M., Spaan, W. J. and Gorbalenya, A. E. (2003) Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331, 991-1004. https://doi.org/10.1016/S0022-2836(03)00865-9
  26. Thiel, V., Ivanov, K. A., Putics, A., Hertzig, T., Schelle, B., Bayer, S., Weissbrich, B., Snijder, E. J., Rabenau, H., Doerr, H. W., Gorbalenya, A. E. and Ziebuhr, J. (2003) Mechanisms and enzymes involved in SARS coronavirus genome expression. J. Gen. Virol. 84, 2305-2315. https://doi.org/10.1099/vir.0.19424-0
  27. Welsh, K. M., Lu, A. L., Clark, S. and Modrich, P. (1987). Isolation and characterization of the Escherichia coli mutH gene product. J. Biol. Chem. 262, 15624-15629.
  28. Ziebuhr, J. (2005) The Coronavirus Replicase; in Coronavirus Replication and Reverse Genetics, Enjuanes, L. (ed.), pp. 58-94, Springer, Berlin, Germany.

피인용 문헌

  1. Synthesis in Escherichia coli cells and characterization of the active exoribonuclease of severe acute respiratory syndrome coronavirus vol.43, pp.3, 2009, https://doi.org/10.1134/S0026893309030091
  2. Structural basis and functional analysis of the SARS coronavirus nsp14–nsp10 complex vol.112, pp.30, 2015, https://doi.org/10.1073/pnas.1508686112
  3. Yeast-based assays for the high-throughput screening of inhibitors of coronavirus RNA cap guanine-N7-methyltransferase vol.104, 2014, https://doi.org/10.1016/j.antiviral.2014.02.002
  4. Short peptides derived from the interaction domain of SARS coronavirus nonstructural protein nsp10 can suppress the 2′-O-methyltransferase activity of nsp10/nsp16 complex vol.167, pp.2, 2012, https://doi.org/10.1016/j.virusres.2012.05.017
  5. Chilo iridescent virus (CIV) ORF 012L encodes a protein with both exonuclease and endonuclease functions vol.161, pp.11, 2016, https://doi.org/10.1007/s00705-016-3007-4
  6. How RNA viruses maintain their genome integrity vol.91, pp.6, 2010, https://doi.org/10.1099/vir.0.020818-0
  7. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase vol.106, pp.9, 2009, https://doi.org/10.1073/pnas.0808790106
  8. Characterization of the guanine-N7 methyltransferase activity of coronavirus nsp14 on nucleotide GTP vol.176, pp.1-2, 2013, https://doi.org/10.1016/j.virusres.2013.05.001
  9. RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex vol.109, pp.24, 2012, https://doi.org/10.1073/pnas.1201130109
  10. Atlas of coronavirus replicase structure vol.194, 2014, https://doi.org/10.1016/j.virusres.2013.12.004
  11. Molecular mechanisms of coronavirus RNA capping and methylation vol.31, pp.1, 2016, https://doi.org/10.1007/s12250-016-3726-4
  12. A survey of the year 2007 literature on applications of isothermal titration calorimetry vol.21, pp.5, 2008, https://doi.org/10.1002/jmr.909
  13. To Reduce Replication and Pathogenesis vol.89, pp.16, 2015, https://doi.org/10.1128/JVI.00948-15