Regulation properties of phospholipase C$\delta$ cloned from Misgurnus mizolepis

  • Kim, Na-Young (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Ahn, Sang-Jung (Faculty of Food Science and Biotechnology, Pukyong National University) ;
  • Jeon, Soo-Jin (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Seo, Jung-Soo (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kim, Moo-Sang (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Lee, Sang-Hwan (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Je, Ju-Eun (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Sung, Ji-Hea (Faculty of Food Science and Biotechnology, Pukyong National University) ;
  • Lee, Hyung-Ho (Faculty of Food Science and Biotechnology, Pukyong National University) ;
  • Lee, June-Woo (Department of Environmental Engineering, Catholic University) ;
  • Chung, Joon-Ki (Department of Aquatic Life Medicine, Pukyong National University)
  • Published : 2007.08.30

Abstract

Phosphoinositide-specific phospholipase Cδ (PLCδ) plays an important role in many cellular responses and is involved in the production of second messenger. The present study was conducted to characterize the catalytic and regulatory properties of the PLCδ of Misgurnus mizolepis (ML-PLCδ). The ML-PLCδ gene was cloned and expressed under according to the method of the previous report (Kim et al., 2004), and its recombinant protein was purified by successive chromatography using Ni2+-NTA affinity column. The recombinant ML-PLCδ showed a concentration-dependent PLC activity to phosphatidylinositol 4,5-bisphosphate (PIP2) or phosphatidylinositol (PI). Its activity was absolutely Ca2+-dependence, which was similar to mammalian PLCδ isozymes. The Ca2+ concentration yielding maximal activation of ML-PLCδ was 100 μM. However, the activity was decreased interestingly by a polyamine, such as spermine and spermidine. In vitro assay using cholate-micelle cell, ML-PLCδ activity was inhibited in dose-dependent manner by sphinogosine but increased by phosphocholine . In the lipid-binding assay, ML-PLCδ was strongly bound to LPA, PI(3)P, PI(4)P, PI(5)P, PI(3,5)P2, PI(4,5)P2, PI(3,4,5)P3 and PA, but it showed the low affinity to S1P, PI(3,4)P2 and PS. Taken together our results, it is suggested that the general catalytic and regulatory properties of ML-PLCδ are similar with those of mammalian PLCδ1 isozymes, but the N-terminal extended piscine phospholipase Cδ1 (ML-PLCδ) might reflect some distinctions in regulatory properties and inositol-lipid binding specificity between piscine ML-PLCδ and mammalian PLCδ isozymes.

Keywords

References

  1. Banno, Y., Okano, Y. and Nozawa, Y.: Thrombinmediated phosphoinositide hydrolysis in Chinese hamster ovary cells overexpressing phospholipase C-delta 1. J. BioI. Chem., 269: 15846-15852, 1994
  2. Chang, J.-S., Seok, H., Kwon, T.-K., Min, D.S., Ahn, B.-H., Lee, Y. H., Suh, J.-W., Kim, J.W., Iwashita, S., Omori, A., Ichinose, S., Numata, O., Seo, J.K., Oh, Y.-S. and Suh, P.-G.: Interaction of Elonation factor-I$\alpha$ and pleckstrin homology domain of phospholipase C $\gamma$-1 with activating its activity. J. BioI.Chem., 277: 19697-19702, 2002 https://doi.org/10.1074/jbc.M111206200
  3. Ferguson, K.M., Lemmon, M.A., Schlessinger, J. and Sigler, P.B.: Structureof the high affinity complex of inositol triph osphate with a phosph olipase C pleckstrin homology domain. Cell, 8: 1037-1046, 1995
  4. Garcia, P., Gupta, R., Shah, S., Morris, A.J., Rudge, S.A., Scarlata, S., Petrova, V., Mclaughlim, S. and Rhbecchi, M.: The pleckstrin homology domain of phospholipase C-.delta .1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochemistry, 34: 16228-16234, 1995 https://doi.org/10.1021/bi00049a039
  5. Haber, M.T., Fukui, T., Lebowiz, M.S. and Lowenstein J. M.: Activation of phosphoinositidespecific phospholipase C $\delta$I requires that $Ca^{2+}$ bind to the catalytic domain but not the C2 domain. Arch. Biochern. Biophys., 288: 243-249,1991 https://doi.org/10.1016/0003-9861(91)90191-K
  6. Hodson, E.A., Ashley,C.C., Hughes, A.D. and Lymn, J.S.: Regulation of phospholipase Cdelta by GTP-binding proteins-rhoA as an inhibitory modulator. Biochim. Biophys. Acta., 1403: 97-101,1998 https://doi.org/10.1016/S0167-4889(98)00028-7
  7. Kim, M.S., Seo, R.S., Choi, G.E., Lim, S.U., Chung, J. K. and Lee, H.H.: Molecular cloning and expression analysis of phospholipase C\delta from mud loach, Misgurnus mizolepis. Comp. Biochern. Physiol., 139B: 681-693, 2004
  8. Lee, W.K., Kim, J.K., Seo, M.S., Cha, J.H., Lee, K.J., Rha, H.K., Min, D.S., Jo, Y.H. and. Lee, K.H.: Molecular cloning and expression analysis of a mouse phospholipase Cdelta1, Biochem. Biophys. Res. Commun., 261: 393-399, 1999 https://doi.org/10.1006/bbrc.1999.1035
  9. Lomasney, J.W., Cheng, H.-F., Rofflers, S.R. and King, K.: Activation of phospholipase C\delta1 through C2 domain by a $Ca^{2+}$-enzyme-phosphatidylserine ternary complex. J. BioI. Chem., 274: 21995-22001,1999 https://doi.org/10.1074/jbc.274.31.21995
  10. Pawelczyk, T. and Lowenstein, J.M.: Binding of phospholipase C delta 1 to phospholipid vesicles. Biochem. J., 291: 693-696, 1993 https://doi.org/10.1042/bj2910693
  11. Pawelczyk, T. and Lowenstein, J.M.: The effect of different molecular species of sphinogomyelin on phospholipase C$\delta1$activity. Biochemie., 79: 741-748, 1997 https://doi.org/10.1016/S0300-9084(97)86932-5
  12. Pawelczyk, T. and Matecki, A.: Expression, Purification and kinetic properties of human recombinant phospholipase C$\delta$3. Acta Biochim. Polon., 44: 221-230, 1997a
  13. Pawelczyk, T. and Matecki, A: Structure requirements of phospholipase C$\delta1$ for regulation by spermine, sphinogosine and sphinomyelin. Eur. J. Biochem., 248: 459-465,1997b https://doi.org/10.1111/j.1432-1033.1997.00459.x
  14. Pawelczyk, T. and Matecki, A.: Localization of phospholipase C$\delta$3 in the cell and regulation of its activity by phospholipids and calcium. Eur. J. Biochem., 257: 169-177, 1998 https://doi.org/10.1046/j.1432-1327.1998.2570169.x
  15. Rebecchi, M., Peterson, A. and McLaughlin, S.: Phosphoinositide-specific phospholipase C-delta 1 binds with high affinity to phospholipid vesicles containing phosphatidylinositol 4,5-bisphosphate. Biochemistry, 31: 12742-12747, 1992 https://doi.org/10.1021/bi00166a005
  16. Rhee, S.G.: Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem., 70: 281-312,2001 https://doi.org/10.1146/annurev.biochem.70.1.281
  17. Sagawa, N., Bleasdale, J.E. and Di Renzo, G.C.: The effects of polyamines and aminoglycosides on phosphatidylinositol-specific phospholipase C from human. Biochim. Biophys. Acta., 752: 153-61,1983 https://doi.org/10.1016/0005-2760(83)90243-6
  18. Stewart, A.J., Mukherjee, J., Roberts S.J., Lester D. and Farquharson, C.; Identification of a novel class of mammalian phosphoinositolspecific phospholipase C enzymes. lnt. J. Mol. Med., 15:117-121,2005
  19. Thodeti, C.K., Adolfsson, J., Juhas, M. and Sjolander, A: Leukotriene D(4) triggers an association between G$\beta \gamma $ subunits and phospholipase C-$\gamma $1 in intestinal epithelial cells. J. BioI. Chem., 275: 9849-9853, 2000 https://doi.org/10.1074/jbc.275.13.9849
  20. Varnai, P., Lin, X., Lee., S.B., Tuymetova, G., Bondeva, T., Spat, A., Rhee, S.G., Hajnoczky, G. and Balla, T: Inositol Lipid Binding and Membrane Localization of Isolated Pleckstrin Homology (PH) Domains, J. BioI. Chem., 277: 27412-27422, 2002 https://doi.org/10.1074/jbc.M109672200
  21. Wang, T., Pentyala, S., Rebecchi, M.J. and Scarlata, S.: Differential association of the pleckstrin homology domains of phospholipases C-$\delta1$, C-$\beta$2, and C-$\beta$1 with lipid bilayers and the$\beta \gamma$ subunits of heterotrimeric G proteins. Biochemistry, 38: 1517-1524, 1999 https://doi.org/10.1021/bi982008f
  22. Yagisawa, H., Okada, M., Naito, Y., Sasaki, K., Yamaga, M. and Fujii, M.: Coordinated intracellular translocation of phosphoinositide- specific phospholipase C-$\delta$ with the cell cycle. Biochim. Biophys. Acta., 1761: 522-534, 2006 https://doi.org/10.1016/j.bbalip.2006.02.016