The FEM Analysis on the Crestal Cortical Bone around the Implant according to the Cancellous Bone Density and Loading Positions

임프란트 매식시 해면골질의 차이에 따른 치밀골 상 응력분석

  • Jeung, Sin-Young (Dept of Prosthodontics, College of Dentistry, Chosun University) ;
  • Kim, Chang-Hyun (Dept of Prosthodontics, College of Dentistry, Chosun University)
  • 정신영 (조선대학교 치과대학 보철학교실) ;
  • 김창현 (조선대학교 치과대학 보철학교실)
  • Published : 2007.03.30

Abstract

This study was performed to compare the stress distribution pattern in the crestal cortical bone and cancellous bone using 3-dimensional finite element stress analysis when 2 different Young's modulus(high modulus, model 1; low modulus, model 2) of cancellous bone was assumed. For the analysis, a finite element model was designed to have two square-threaded implants fused together and located at first and second molar area. Stress distribution was observed when vertical load of 200N was applied at several points on the occlusal surfaces of the implants, including central fossa, points 1.5mm, 2mm, 3mm and 3.5mm buccally away from central fossa. The results were as follows; 1. In both model, the maximum Von-Mises stress in the crestal cortical bone was greater when the load was applied at the central point, points 1.5mm and 2mm buccally away from central fossa than other cases. 2. In the cortical bone around first and second molar, model 2 showed greater Von-Mises stress than model 1. It is concluded that when the occlusal contact is afforded, the distribution of stress varies depending on the density of cancellous bone and the location of loading. More favorable stress distribution is expected when the contact load is applied within the diameter of fixtures.

Keywords

References

  1. Lekholm, U. Zarb, GA.. Patient selection and preparation. In Branemark P-I, Zarb GA, Albrektsson T, editors:Tissue integrated protheses: osseintegration in clinical denistry, Chicago, Quintessence, 1985
  2. Bidez, MW. Misch, CE.. 'Force transfer in implant dentistry: basic concepts and principles.' J Oral Implantol. 18:264, 1992
  3. Brunski, JB.. 'In vivo bone response to biomechanical loading at the bone/dental-implant interface.' Advance Dent Res. 13:99, 1999
  4. Kim, WT. Cha, YD. Oh, SJ et al.. : The three dimensional finite element analysis of stress according to implant thread design under the axial load. J Korean Asso Oral Maxillofac Surg 27:111, 2001
  5. 최민호, 강재석, 부수붕, 오상호, 안옥주, 강동완: 임플란트 보철물의 점하중및 면하중에 따른 유한 요소법적 응력분석, 대한턱관절기능교합학회, 제 20권 2호, 83-94. 2004
  6. 김창현, 강재석, 부수붕, 오상호, 안옥주, 강동완: 경사진 임플란트 고정체의 응력분석, 대한턱관절기능교합학회, 제 20권 2호, 71-82. 2004
  7. 지숙, 이상화, 김수관, 김병옥: 재생된 골과 자연골 사이의 계면에 대한 유한요소법적 분석, 대한악안면성형재건외과학회지, Vol. 26, No.1, 2004
  8. 김수관, 박병기, 심형순, 김종관, 김병옥. 제 4형 골 절로 재생된 골에 식립한 나사형 임플란트에 대한 유한요소법적 분석, 대한악안면성형재건외과학회지 , Vol. 26, No.6, 2004
  9. 김수관, 김재덕, 김종관, 김병옥. 재생된 골에 식립 한 넓은 직경의 나사형 임플란트에 대한 유한요소 법적 분석, 대한구강악안면외과과학지, Vol. 31, No.3, 2005
  10. Geng, JP. Tan, KB. Liu, GR.. Application of fmite element analysis in implant dentisty: a review of the literature. J Prosthet Dent 85:585-98, 2001 https://doi.org/10.1067/mpr.2001.115251
  11. Clift, SE. Fisher, J. Watson, CJ Finite element stress and strain analysis of the bone surrounding a dental implant : Effect of variations in bone modulus. Proc Instn Mech Engrs 206:233-241, 1992
  12. Gottlander, M. Albrektsson, T. Carlsson, LV.. A histomorphometric study of unthreaded hydroxyapatite- coated and titanium-coated implants in rabbit bone. Int J Oral Maxillofac Implants 7:485, 1992
  13. Weinlander, M. Kenney, EB. Lekovic, V. et al.. Histomorphometry of bone apposition around three types of endosseous dental implants, Int J Oral Maxillofac Implants 7:491, 1992
  14. Weinberg, L.A.. Force distribution in splinted anterior teeth. Oral Surg Oral Med Oral Pathol. 10:484-494, 1957 https://doi.org/10.1016/0030-4220(57)90007-5
  15. Weinberg, L.A. Force distribution in splinted posterior teeth. Oral Surg Oral Med Oral Pathol. 10:12681276, 1957
  16. Stegaroiu, R. Kusakari, H. Nishiyama, S. Miyakawa, O.. 'Influnence of prosthsis material on stress distribution in bone and implant: A 3 dimensional finite element analysis.' Int Oral Maxillofac. Implant. 13:781-790, 1998
  17. Lai, H, Zhang F. Zhang, B. Yang, C. Xue M.. 'Influence of percentage of osseointegration on stress distribution around dental implant.' Clin J Dent Res., 1(3): 7-11, 1998
  18. Clelland, NY. Lee, JK. Bimbenet OC. Gilat AG.. 'Use of an axisymmetric fmite element method to compare maxillary bone variable for a loaded implant.' J Prosthet Dent 2:183-189, 1993
  19. Tada, S. Stegaroiu, R. Kitamura, E, Miyakawa, O. Kusakari H.. 'Influence of implant design and bone quality on stress/ strain distribution in bone around implants: A 3 dimensional finite element analysis.' Int Oral Maxillofac. Implant. 18:357-368, 2003
  20. Rho, JY. Ashman, RB. Turner, CH.. Young's modulus of trabecular and cortical bone material: Ultrasonic and micro-tensile measurements. J Biomech., 26:111-119, 1993 https://doi.org/10.1016/0021-9290(93)90042-D
  21. Wadamoto,M. Akagawa,Y, Sato Y, Kubo, T: The three-dimensional bone interface of an osseointegrated implant, 1: a morphometric evaluation in initial healing, J Prosthet Dent., 76:170-175, 1996 https://doi.org/10.1016/S0022-3913(96)90302-9