A Study on Wafer-Level 3D Integration Including Wafer Bonding using Low-k Polymeric Adhesive

저유전체 고분자 접착 물질을 이용한 웨이퍼 본딩을 포함하는 웨이퍼 레벨 3차원 집적회로 구현에 관한 연구

  • Kwon, Yongchai (Department of Chemical and Environmental Technology, Inha Technical College) ;
  • Seok, Jongwon (School of Mechanical Engineering, College of Engineering, Chung-Ang University) ;
  • Lu, Jian-Qiang (Focus Center-New York, Rensselaer: Interconnections for Hyperintegration, Rensselaer Polytechnic Institute) ;
  • Cale, Timothy (Focus Center-New York, Rensselaer: Interconnections for Hyperintegration, Rensselaer Polytechnic Institute) ;
  • Gutmann, Ronald (Focus Center-New York, Rensselaer: Interconnections for Hyperintegration, Rensselaer Polytechnic Institute)
  • 권용재 (인하공업전문대학교 화공환경과) ;
  • 석종원 (중앙대학교 기계공학부) ;
  • ;
  • ;
  • Received : 2007.02.05
  • Accepted : 2007.05.09
  • Published : 2007.10.31

Abstract

A technology platform for wafer-level three-dimensional integration circuits (3D-ICs) is presented, and that uses wafer bonding with low-k polymeric adhesives and Cu damascene inter-wafer interconnects. In this work, one of such technical platforms is explained and characterized using a test vehicle of inter-wafer 3D via-chain structures. Electrical and mechanical characterizations of the structure are performed using continuously connected 3D via-chains. Evaluation results of the wafer bonding, which is a necessary process for stacking the wafers and uses low-k dielectrics as polymeric adhesive, are also presented through the wafer bonding between a glass wafer and a silicon wafer. After wafer bonding, three evaluations are conducted; (1) the fraction of bonded area is measured through the optical inspection, (2) the qualitative bond strength test to inspect the separation of the bonded wafers is taken by a razor blade, and (3) the quantitative bond strength is measured by a four point bending. To date, benzocyclobutene (BCB), $Flare^{TM}$, methylsilsesquioxane (MSSQ) and parylene-N were considered as bonding adhesives. Of the candidates, BCB and $Flare^{TM}$ were determined as adhesives after screening tests. By comparing BCB and $Flare^{TM}$, it was deduced that BCB is better as a baseline adhesive. It was because although wafer pairs bonded using $Flare^{TM}$ has a higher bond strength than those using BCB, wafer pairs bonded using BCB is still higher than that at the interface between Cu and porous low-k interlevel dielectrics (ILD), indicating almost 100% of bonded area routinely.

웨이퍼 레벨(WL) 3차원(3D) 집적을 구현하기 위해 저유전체 고분자를 본딩 접착제로 이용한 웨이퍼 본딩과, 적층된 웨이퍼간 전기배선 형성을 위해 구리 다마신(damascene) 공정을 사용하는 방법을 소개한다. 이러한 방법을 이용하여 웨이퍼 레벨 3차원 칩의 특성 평가를 위해 적층된 웨이퍼간 3차원 비아(via) 고리 구조를 제작하고, 그 구조의 기계적, 전기적 특성을 연속적으로 연결된 서로 다른 크기의 비아를 통해 평가하였다. 또한, 웨이퍼간 적층을 위해 필수적인 저유전체 고분자 수지를 이용한 웨이퍼 본딩 공정의 다음과 같은 특성 평가를 수행하였다. (1) 광학 검사에 의한 본딩된 영역의 정도 평가, (2) 면도날(razor blade) 시험에 의한 본딩된 웨이퍼들의 정성적인 본딩 결합력 평가, (3) 4-점 굽힘시험(four point bending test)에 의한 본딩된 웨이퍼들의 정량적인 본딩 결합력 평가. 본 연구를 위해 4가지의 서로 다른 저유전체 고분자인 benzocyclobutene(BCB), Flare, methylsilsesquioxane(MSSQ) 그리고 parylene-N을 선정하여 웨이퍼 본딩용 수지에 대한 적합성을 검토하였고, 상기 평가 과정을 거쳐 BCB와 Flare를 1차적인 본딩용 수지로 선정하였다. 한편 BCB와 Flare를 비교해 본 결과, Flare를 이용하여 본딩된 웨이퍼들이 BCB를 이용하여 본딩된 웨이퍼보다 더 높은 본딩 결합력을 보여주지만, BCB를 이용해 본딩된 웨이퍼들은 여전히 칩 back-end-of-the-line (BEOL) 공정조건에 부합되는 본딩 결합력을 가지는 동시에 동공이 거의 없는 100%에 가까운 본딩 영역을 재현성있게 보여주기 때문에 본 연구에서는 BCB가 본딩용 수지로 더 적합하다고 판단하였다.

Keywords

References

  1. International Technology Roadmap for Semiconductors (ITRS): 2003 Edition(Semiaconductor Industry Association, 2003)
  2. Davis, J. A., Venkatesan, R., Kaloyeros, A., Beylansky, M., Souri, S. J., Banerjee, K., Saraswat, K. C., Rahman, A., Reif, R. and Meindl, J. D., 'Interconnect Limits on Gigascale Integration (GSI) in the 21st Century,' Proc. IEEE, 89(3), 305-324(2001)
  3. Lu, J.-Q., Kwon, Y., Rajagopalan, G., Gupta, M., McMahon, J., Lee, K.-W., Kraft, R. P., Jindal, A., McDonald, J. F., Cale, T. S., Gutmann, R. J., Xu, B., Eisenbraun, E., Castracane, J. and Kaloyeros, A., 'A Wafer-Scale 3D IC Technology Platform using Dielectric Bonding Glues and Copper Damascene Patterned Inter-Wafer Interconnects,' 2002 IEEE Int'l Interconnect Technol. Conf., 78-80(2002)
  4. Guarini, K. W., Topol, A. W., Ieong, M., Yu, R., Shi, L., Newport, M. R., Frank, D. J., Singh, D. V., Cohen, G. M., Nitta, S. V., Boyd, D. C., O'Neil, P. A., Tempest, S. L., Pogge, H. B., Purushothaman, S. and Haensch, W. E., 'Electrical Integrity of State-Of-The-Art 0.13 um SOI CMOS Devices and Circuits Transferred for 3D IC Fabrication,' Dig. Int'l Elect. Dev. Meeting, 943-945(2002)
  5. Rahman, A., Fan, A., Chung, J. and Reif, R., 'Comparison of Key Performance Metrics in Two- and Three-Dimensional Integrated Circuits,' 2000 IEEE Int'l Interconnect Technol. Conf., 18-20(2000)
  6. Souri, S. J. and Saraswat, K. C., 'Interconnect Performance Modeling for 3D Integrated Circuits with Multiple Si Layers,' 1999 IEEE Int'l Interconnect Technol. Conf., 24-26(1999)
  7. Lee, K. W., Nakamura, T., Ono, T., Yamada, Y., Mizukusa, T., Park, K. T., Kurino, H. and Koyanagi, M., 'Three-Dimensional Shared Memory Fabricated using Wafer Stacking Technology,' Dig. Int'l Elect. Dev. Meeting, 165-167(2000)
  8. Kwon, Y., 'Wafer Bonding for 3D Integration,' Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY (2003)
  9. Kwon, Y., Jindal, A., McMahon, J. J., Lu, J.-Q., Gutmann, R. J. and Cale, T. S., 'Dielectric Glue Wafer Bonding for 3D Ics,' Mater. Res. Soc. Symp. Proc., 766, 27-32(2003)
  10. Lu, J.-Q., Kwon, Y., Kraft, R. P., Gutmann, R. J., McDonald, J. F. and Cale, T. S., 'Stacked Chip-to-Chip Interconnections using Wafer Bonding Technology with Dielectric Bonding Glues,' 2001 IEEE Int'l Interconnect Technol. Conf., 219-221(2001)
  11. Kwon, Y., Seok, J., Lu, J.-Q., Cale, T. S. and Gutmann, R. J., 'Thermal Cycling Effects on Critical Adhesion Energy and Residual Stress in Benzocyclobutene-Bonded Wafers,' J. Electrochem. Soc., 152(4), G286-G294(2005)
  12. Kwon, Y., Lu, J.-Q., Kraft, R. P., Gutmann, R. J., McDonald, J. F. and Cale, T. S., 'Wafer Bonding using Dielectric Polymer Thin Films in 3D Integration,' Mater. Res. Soc. Symp. Proc., 710, 231-236(2002)
  13. De Gennes, P. G., 'Reptation of a Polymer Chain in The Presence of Fixed Obstacles,' J. Chem. Phys., 55(4), 572-579(1971) https://doi.org/10.1063/1.1675789
  14. Sperling, L. H., 'Introduction to Physical Polymer Science,' Wiley Interscience (1997)
  15. Snodgrass, J. M., Pantelidis, D., Jenkins, M. L., Bravman, J. C., and Dauskardt, R. H., 'Subcritical Debonding of Polymer/Silica Interfaces under Monotonic and Cyclic Loading,' Acta Metall., 50(9), 2395-2411(2002)
  16. Charalambides, P. G., Lund, J., Evans, A. G. and McMeeking, R. M., 'A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces,' J. Appl. Mech., 56(1), 77-82(1989) https://doi.org/10.1115/1.3176069
  17. Chua, C. T., Sarkar, G. and Hu, X., 'In Situ Characterization of Methylsilsesquioxane Curing,' J. Electrochem. Soc., 145(11), 4007-4011(1998) https://doi.org/10.1149/1.1838905
  18. Vrtis, R. N., Heap, K. A., Burgoyne, W. F. and Robeson, L. M., 'Poly(Arylene Ethers) as Low Dielectric Constant Materials for ULSI Interconnect Applications,' Mater. Res. Soc. Symp. Proc., 443, 171-176(1997)
  19. Garrou, P. E., Heistand, R. H., Dibbs, M. G., Mainal, T. A., Mohler, C. E., Stokich, T. M., Townsend, P. H., Adema, G. M., Berry, M. J. and Turlik, I., 'Rapid Thermal Curing of BCB Dielectric,' IEEE Trans. Comp., Hybrids Manufact. Technol., 16(1), 46-52(1993) https://doi.org/10.1109/33.214859