DOI QR코드

DOI QR Code

ATP-independent Thermoprotective Activity of Nicotiana tabacum Heat Shock Protein 70 in Escherichia coli

  • Cho, Eun-Kyung (Department of Bio-Food Materials, College of Medical Life Science, Silla University) ;
  • Bae, Song-Ja (Department of Food and Nutrition, College of Medical Life Science, Silla University)
  • Published : 2007.01.31

Abstract

To study the functioning of HSP70 in Escherichia coli, we selected NtHSP70-2 (AY372070) from among three genomic clones isolated in Nicotiana tabacum. Recombinant NtHSP70-2, containing a hexahistidine tag at the amino-terminus, was constructed, expressed in E. coli, and purified by $Ni^{2+}$ affinity chromatography and Q Sepharose Fast Flow anion exchange chromatography. The expressed fusion protein, $H_6NtHSP70$-2 (hexahistidine-tagged Nicotiana tabacum heat shock protein 70-2), maintained the stability of E. coli proteins up to 90$^{\circ}C$. Measuring the light scattering of luciferase (luc) revealed that NtHSP70-2 prevents the aggregation of luc without ATP during high-temperature stress. In a functional bioassay (1 h at 50$^{\circ}C$) for recombinant $H_6NtHSP70$-2, E. coli cells overexpressing $H_6NtHSP70$-2 survived about seven times longer than those lacking $H_6NtHSP70$-2. After 2 h at 50$^{\circ}C$, only the E. coli overexpressing $H_6NtHSP70$-2 survived under such conditions. Our NtHSP70-2 bioassays, as well as in vitro studies, strongly suggest that HSP70 confers thermo-tolerance to E. coli.

Keywords

References

  1. Abdul, K., Terada, K., Gotoh, T., Hafizur, R. and Mori, M. (2002) Characterization and functional analysis of a heart-enriched DnaJ/ Hsp40 homolog dj4/DjA4. Cell Stress Chap. 7, 156-166. https://doi.org/10.1379/1466-1268(2002)007<0156:CAFAOA>2.0.CO;2
  2. Brehmer, D., Rudiger, S., Gässler, C. S., Klostermeier, D., Packschies, L., Reinstein, J., Mayer, M. P. and Bukau, B. (2001) Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nat. Struct. Biol. 8, 427-432. https://doi.org/10.1038/87588
  3. Bukau, B. and Horwich, A. L. (1999) The Hsp70 and Hsp60 chaperone machines. Cell 692, 351-366.
  4. Cho, E. K. and Hong, C. B. (2004) Molecular cloning and expression pattern analyses of heat shock protein 70 genes from Nicotiana tabacum. J. Plant Biol. 47, 149-159. https://doi.org/10.1007/BF03030646
  5. Cho, E. K., Lee, Y. K. and Hong, C. B. (2005) A Cyclophilin from Griffithsia japonica has thermoprotective activity and is affected by CsA. Mol. Cells 20, 142-150.
  6. Efremova, S. M., Margulis, B. A., Guzhova, I. V., Itskovich, V. B., Lauenroth, S., Muller, W. E. and Schroder, H. C. (2002) Heat shock protein hsp70 expression and DNA damage in Baikalian sponges exposed to model pollutants and wastewater from Baikalsk Pulp and Paper Plant. Aquat. Toxicol. 57, 267-280. https://doi.org/10.1016/S0166-445X(01)00209-0
  7. Groemping, Y. and Reinstein, J. (2001) Folding properties of the nucleotide exchanger factor GrpE from Thermus thermophilus: GrpE is a thermosensor that mediates heat shock response. J. Mol. Biol. 314, 167-178. https://doi.org/10.1006/jmbi.2001.5116
  8. Hartl, F. U. and Hayer-Hartl, M. (2002) Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 295, 1852-1858. https://doi.org/10.1126/science.1068408
  9. Haslbeck, M., Miess, A., Stromer, T., Walter, S. and Buchner, J (2005) Disassembling protein aggregates in the yeast cytosol; The cooperation of HSP26 with SSA1 and HSP104. J. Biol. Chem. 280, 23861-23868. https://doi.org/10.1074/jbc.M502697200
  10. Hoff, K. G., Silberg, J. J. and Vickery, L. E. (2000) Interaction of the iron-sulfur cluster assembly protein IscU with the Hsc66/ Hsc20 molecular chaperone system of Escherichia coli. Proc. Natl. Acad. Sci. USA 97, 7790-7795. https://doi.org/10.1073/pnas.130201997
  11. Kelley, W. L. (1999) Molecular chaperones: How J domains turn on Hsp70s. Curr. Biol. 22, 305-308.
  12. Kluck, C. J., Patzelt, H., Genevaux, P., Brehmer, D., Rist, W., Schneider-Mergener, J., Bukau, B. and Mayer, B. P. (2002) Structure-function analysis of HscC, the Escherichia coli member of a novel subfamily of specialized Hsp70 chaperones. J. Biol. Chem. 277, 41060-41069. https://doi.org/10.1074/jbc.M206520200
  13. Lee, G. J. and Vierling, E. (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol. 122, 189-198. https://doi.org/10.1104/pp.122.1.189
  14. Lee, S. Y. and Tsai, F. T. F. (2005) Molecular chaperones in protein quality control. J. Biochem. Mol. Biol. 38, 259-265. https://doi.org/10.5483/BMBRep.2005.38.3.259
  15. Liu, J. G., Yao, Q. H., Zhang, Z., Peng, R. H., Xiong, A. S., Xu, F. and Zhu, H. (2005) Isolation and characterization of a cDNA encoding two novel heat-shock factor OsHSF6 and OsHSF12 in Oryza Sativa L. J. Biochem. Mol. Biol. 38, 602-608. https://doi.org/10.5483/BMBRep.2005.38.5.602
  16. Luft, J. C. and Dix, D. J. (1999) HSP70 expression and function during embryogenesis. Cell Stress Chap. 4, 162-170. https://doi.org/10.1379/1466-1268(1999)004<0162:HEAFDE>2.3.CO;2
  17. Mayer, M. P., Brehmer, D., Gassler, C. S. and Bukau, B. (2001) Advances in protein chemistry: Protein folding in the cell. Acad. Press 59, 1-44.
  18. Mayer, M. P. and Bukau, B. (2005) Hsp70 chaperones: Cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62, 670-684. https://doi.org/10.1007/s00018-004-4464-6
  19. Mayer, M. P., Rudiger, S. and Bukau, B. (2000) Molecular basis of interactions of the DnaK chaperone with substrates. Biol. Chem. 381, 877-885. https://doi.org/10.1515/BC.2000.109
  20. Michels, A. A., Kanon, B., Bensaude, O., Konings, A. W. T. and Kampinga, H. H. (1997) HSP70 and HSP40 chaperone activities in the cytoplasm and the nucleus of mammalian cells. J. Biol. Chem. 272, 33283-33289. https://doi.org/10.1074/jbc.272.52.33283
  21. Mogk, A., Tomoyasu, T., Goloubinoff, P., Rudiger, S., Roder, D., Langen, H. and Bukau, B. (1999) Identification of thermolabile Escherichia coli proteins: Prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 18, 6934-6949. https://doi.org/10.1093/emboj/18.24.6934
  22. Nollen, E. A. A., Brunsting, J. F., Roelofsen, H., Weber, L. A. and Kampinga, H. H. (1999) In vivo chaperone activity of heat shock protein 70 and thermotolerance. Mol. Cell. Biol. 19, 2069-2079. https://doi.org/10.1128/MCB.19.3.2069
  23. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nded. Cold Spring Harbor Laboratory Press, New York.
  24. Silberg, J. J. and Vickery, L. E. (2000) Kinetic characterization of the ATPase cycle of the molecular chaperone Hsc66 from Escherichia coli. J. Biol. Chem. 275, 7779-7786. https://doi.org/10.1074/jbc.275.11.7779
  25. Silberg, J. J., Tapley, T. L., Hoff. K. G. and Vickery, L. E. (2004) Regulation of the HscA ATPase reaction cycle by the cochaperone HscB and the iron-sulfur cluster assembly protein IscU. J. Biol. Chem. 279, 53924-53931. https://doi.org/10.1074/jbc.M410117200
  26. Tanaka, N., Nakao, S., Wadai, H., Ikeda, S., Chatellier, J. and Kunugi, S. (2002) The substrate binding domain of DnaK facilitates slow protein refolding. Proc. Natl. Acad. Sci. USA 99, 15398-15403. https://doi.org/10.1073/pnas.242317099
  27. Tatsuta, T., Tomoyasu, T., Bukau, B., Kitagawa, M., Mori, H., Karata, K. and Ogura, T. (1998) Heat shock regulation in the ftsH null mutant of Escherichia coli: Dissection of stability and activity control mechanisms of $\sigma^{32}$ in vivo. Mol. Microbiol. 30, 583-593. https://doi.org/10.1046/j.1365-2958.1998.01091.x
  28. Tomoyasu, T., Mogk, A., Langen, H., Goloubinoff, P. and Bukau, B. (2001) Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol. Microbiol. 40, 397-413. https://doi.org/10.1046/j.1365-2958.2001.02383.x
  29. Tuttle, A. M. (2006) Characterization of the expression and function of Rana catesbeiana HSP30 and Xenopus laevis HSP27. M.S. thesis. University of Waterloo, Ontario.
  30. Veinger, L., Diamant, S., Buchner, J. and Goloubinoff, P. (1998) The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273, 11032-11037. https://doi.org/10.1074/jbc.273.18.11032

Cited by

  1. Thermo and pH stable ATP-independent chaperone activity of heat-inducible Hsp70 fromPennisetum glaucum vol.5, pp.2, 2010, https://doi.org/10.4161/psb.5.2.10547
  2. Heat-shock protein 70 binds microtubules and interacts with kinesin in tobacco pollen tubes vol.70, pp.9, 2013, https://doi.org/10.1002/cm.21134
  3. Molecular characterization of an ethephon-induced Hsp70 involved in high and low-temperature responses in Hevea brasiliensis vol.47, pp.10, 2009, https://doi.org/10.1016/j.plaphy.2009.06.003
  4. Overexpression of a Metarhizium robertsii HSP25 gene increases thermotolerance and survival in soil vol.98, pp.2, 2014, https://doi.org/10.1007/s00253-013-5360-5
  5. Identification and characterization of a heat-inducible Hsp70 gene from Sorghum bicolor which confers tolerance to thermal stress vol.20, pp.5, 2015, https://doi.org/10.1007/s12192-015-0591-2