DOI QR코드

DOI QR Code

STP-C, an Oncoprotein of Herpesvirus saimiri Augments the Activation of NF-κB through Ubiquitination of TRAF6

  • Chung, Young-Hwa (Department of Nanomaterials Engineering, Pusan National University) ;
  • Jhun, Byung-Hak (Department of Nanomaterials Engineering, Pusan National University) ;
  • Ryu, Su-Chak (Department of Nanomaterials Engineering BK21 Nano Fusion Technology Team, Joint Research Center of PNU-Fraunhofer IGB, Pusan National University) ;
  • Kim, Heui-Soo (Department of Biology, Pusan National University) ;
  • Kim, Cheol-Min (Department of Biochemistry, Pusan National University) ;
  • Kim, Bong-Seok (Biotechnology Research Center, National Fisheries Research & Development Institute) ;
  • Kim, Young-Ok (Biotechnology Research Center, National Fisheries Research & Development Institute) ;
  • Lee, Sang-Jun (Biotechnology Research Center, National Fisheries Research & Development Institute)
  • Published : 2007.05.31

Abstract

Herpesvirus saimiri (HVS), a member of the $\delta$-herpesvirus family, encodes an oncoprotein called Saimiri Transforming Protein (STP) which is required for lymphoma induction in non-human primates. Previous study has shown that STP-C, an oncoprotein of HVS, activates NF-$\kappa$B signaling pathway. However, the detailed mechanism of STP-Cmediated NF-$\kappa$B activation has not been reported yet. We first report that STP-C interacts with TRAF6 protein in vivo and in vitro and further investigation shows that $Glu_{12}$ residue of STP-C is critical for binding to TRAF6. Introduction of ubiquitin together with STP-C augments NF-$\kappa$B activity compared to that of STP-C expression alone. STP-C expression further induces ubiquitination of endogenous TRAF6. In addition, either a deubiquitination enzyme, CYLD or a dominant negative E2-conjugation enzyme reduced NF-$\kappa$B activity in spite of the presence of STP-C, supporting that the interaction between STP-C and TRAF6 induces ubiquitination of TRAF6. NF-$\kappa$B activation by STP-C through the ubiquitinated TRAF6 causes the increased production of IL-8, an inflammatory chemokine and the enhanced expression of costimulatory molecule ICAM, which might ultimately contribute cellular transformation by the exposure of HVS-infected cells with inflammatory microenvironment and chronic activation.

Keywords

References

  1. Baud, V., Liu, Z. G., Bennett, B., Suzuki, N., Xia, Y. and Karin, M. (1999) Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an aminoterminal effector domain. Genes Dev. 13, 1297-1308 https://doi.org/10.1101/gad.13.10.1297
  2. Bradley, J. R. and Pober, J. S. (2001) Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene 20, 6482-6491 https://doi.org/10.1038/sj.onc.1204788
  3. Chau, V., Tobias, J. W., Bachmair, A., Marriott, D., Ecker, D. J., Gonda, D. K. and Varshavsky, A. (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576-1583 https://doi.org/10.1126/science.2538923
  4. Chung, J. Y., Park, Y. C., Ye, H. and Wu, H. (2002) All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J. Cell Sci. 115, 679-688
  5. Damania, B., Choi, J. K. and Jung, J. U. (2000) Signaling activities of gammaherpesvirus membrane proteins. J. Virol. 74, 1593-1601 https://doi.org/10.1128/JVI.74.4.1593-1601.2000
  6. Dempsey, P. W., Doyle, S. E., He, J. Q. and Cheng, G. (2003) The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev. 14, 193-209 https://doi.org/10.1016/S1359-6101(03)00021-2
  7. Deng, L., Wang, C., Spencer, E., Yang, L., Braun, A., You, J., Slaughter, C., Pickart, C. and Chen, Z. J. (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351-361 https://doi.org/10.1016/S0092-8674(00)00126-4
  8. Ely, K. R. and Li, C. (2002) Structurally adaptive hot spots at a protein interaction interface on TRAF3. J. Mol. Recognit. 15, 286-290 https://doi.org/10.1002/jmr.589
  9. Goldberg, A. L. (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895-899 https://doi.org/10.1038/nature02263
  10. Griffin, J. D. (2001) Leukemia stem cells and constitutive activation of NF-kappaB. Blood 98, 2291 https://doi.org/10.1182/blood.V98.8.2291
  11. Habelhah, H., Takahashi, S., Cho, S. G., Kadoya, T., Watanabe, T. and Ronai, Z. (2004) Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-kappaB. EMBO J. 23, 322-332 https://doi.org/10.1038/sj.emboj.7600044
  12. Helbig, G., Christopherson, K. W., 2nd, Bhat-Nakshatri, P., Kumar, S., Kishimoto, H., Miller, K. D., Broxmeyer, H. E. and Nakshatri, H. (2003) NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J. Biol. Chem. 278, 21631-21638 https://doi.org/10.1074/jbc.M300609200
  13. Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. and Jentsch, S. (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135-141 https://doi.org/10.1038/nature00991
  14. Jabara, H., Laouini, D., Tsitsikov, E., Mizoguchi, E., Bhan, A., Castigli, E., Dedeoglu, F., Pivniouk, V., Brodeur, S. and Geha, R. (2002) The binding site for TRAF2 and TRAF3 but not for TRAF6 is essential for CD40-mediated immunoglobulin class switching. Immunity 17, 265-276 https://doi.org/10.1016/S1074-7613(02)00394-1
  15. Jung, J. U., Choi, J. K., Ensser, A. and Biesinger, B. (1999) Herpesvirus saimiri as a model for gammaherpesvirus oncogenesis. Semin. Cancer Biol. 9, 231-239 https://doi.org/10.1006/scbi.1998.0115
  16. Jung, J. U. and Desrosiers, R. C. (1991) Identification and characterization of the herpesvirus saimiri oncoprotein STPC488. J. Virol. 65, 6953-6960
  17. Jung, J. U. and Desrosiers, R. C. (1995) Association of the viral oncoprotein STP-C488 with cellular ras. Mol. Cell. Biol. 15, 6506-6512 https://doi.org/10.1128/MCB.15.12.6506
  18. Kaye, K. M., Devergne, O., Harada, J. N., Izumi, K. M., Yalamanchili, R., Kieff, E. and Mosialos, G. (1996) Tumor necrosis factor receptor associated factor 2 is a mediator of NF-kappa B activation by latent infection membrane protein 1, the Epstein-Barr virus transforming protein. Proc. Natl. Acad. Sci. USA 93, 11085-11090 https://doi.org/10.1073/pnas.93.20.11085
  19. Kneussel, M. (2002) Dynamic regulation of GABA(A) receptors at synaptic sites. Brain Res. Rev. 39, 74-83 https://doi.org/10.1016/S0165-0173(02)00159-5
  20. Kovalenko, A., Chable-Bessia, C., Cantarella, G., Israel, A., Wallach, D. and Courtois, G. (2003) The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 424, 801-805 https://doi.org/10.1038/nature01802
  21. Lee, C. and Yu, M. H. (2005) Protein folding and diseases. J. Biochem. Mol. Biol. 38, 275-280 https://doi.org/10.5483/BMBRep.2005.38.3.275
  22. Lee, H., Choi, J. K., Li, M., Kaye, K., Kieff, E. and Jung, J. U. (1999) Role of cellular tumor necrosis factor receptor-associated factors in NF-kappaB activation and lymphocyte transformation by herpesvirus Saimiri STP. J. Virol. 73, 3913-3919
  23. Lee, N. K. and Lee, S. Y. (2002) Modulation of life and death by tumor necrosis factor-receptor-associated factors (TRAFs). J. Biochem. Mol. Biol. 35, 61-66 https://doi.org/10.5483/BMBRep.2002.35.1.061
  24. Lomaga, M. A., Yeh, W. C., Sarosi, I., Duncan, G. S., Furlonger, C., Ho, A., Morony, S., Capparelli, C., Van, G., Kaufman, S., van der Heiden, A., Itie, A., Wakeham, A., Khoo, W., Sasaki, T., Cao, Z., Penninger, J. M., Paige, C. J., Lacey, D. L., Dunstan, C. R., Boyle, W. J., Goeddel, D. V. and Mak, T. W. (1999) TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 13, 1015-1024 https://doi.org/10.1101/gad.13.8.1015
  25. Medveczky, P., Szomolanyi, E., Desrosiers, R. C. and Mulder, C. (1984) Classification of herpesvirus saimiri into three groups based on extreme variation in a DNA region required for oncogenicity. J. Virol. 52, 938-944
  26. Murthy, S. C., Trimble, J. J. and Desrosiers, R. C. (1989) Deletion mutants of herpesvirus saimiri define an open reading frame necessary for transformation. J. Virol. 63, 3307-3314
  27. Nguyen, L. T., Duncan, G. S., Mirtsos, C., Ng, M., Speiser, D. E., Shahinian, A., Marino, M. W., Mak, T. W., Ohashi, P. S. and Yeh, W. C. (1999) TRAF2 deficiency results in hyperactivity of certain TNFR1 signals and impairment of CD40-mediated responses. Immunity 11, 379-389 https://doi.org/10.1016/S1074-7613(00)80113-2
  28. Peng, J., Schwartz, D., Elias, J. E., Thoreen, C. C., Cheng, D., Marsischky, G., Roelofs, J., Finley, D. and Gygi, S. P. (2003) A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21, 921-926 https://doi.org/10.1038/nbt849
  29. Pickart, C. M. (2001) Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503-533 https://doi.org/10.1146/annurev.biochem.70.1.503
  30. Pickart, C. M. (2001) Ubiquitin enters the new millennium. Mol. Cell 8, 499-504 https://doi.org/10.1016/S1097-2765(01)00347-1
  31. Pickart, C. M. (2004) Back to the future with ubiquitin. Cell 116, 181-190 https://doi.org/10.1016/S0092-8674(03)01074-2
  32. Shi, C. S. and Kehrl, J. H. (2003) Tumor necrosis factor (TNF)-induced germinal center kinase-related (GCKR) and stressactivated protein kinase (SAPK) activation depends upon the E2/E3 complex Ubc13-Uev1A/TNF receptor-associated factor 2 (TRAF2). J. Biol. Chem. 278, 15429-15434 https://doi.org/10.1074/jbc.M211796200
  33. Trompouki, E., Hatzivassiliou, E., Tsichritzis, T., Farmer, H., Ashworth, A. and Mosialos, G. (2003) CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 424, 793-796 https://doi.org/10.1038/nature01803
  34. van de Stolpe, A. and van der Saag, P. T. (1996) Intercellular adhesion molecule-1. J. Mol. Med. 74, 13-33 https://doi.org/10.1007/BF00202069
  35. Wajant, H. and Scheurich, P. (2001) Tumor necrosis factor receptor-associated factor (TRAF) 2 and its role in TNF signaling. Int. J. Biochem. Cell Biol. 33, 19-32 https://doi.org/10.1016/S1357-2725(00)00064-9
  36. Wang, C., Deng, L., Hong, M., Akkaraju, G. R., Inoue, J. and Chen, Z. J. (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346-351 https://doi.org/10.1038/35085597
  37. Wissink, S., van de Stolpe, A., Caldenhoven, E., Koenderman, L. and van der Saag, P. T. (1997) NF-kappa B/Rel family members regulating the ICAM-1 promoter in monocytic THP-1 cells. Immunobiology 198, 50-64 https://doi.org/10.1016/S0171-2985(97)80026-5
  38. Ye, H., Arron, J. R., Lamothe, B., Cirilli, M., Kobayashi, T., Shevde, N. K., Segal, D., Dzivenu, O. K., Vologodskaia, M., Yim, M., Du, K., Singh, S., Pike, J. W., Darnay, B. G., Choi, Y. and Wu, H. (2002) Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418, 443-447 https://doi.org/10.1038/nature00888
  39. Yin, M. J., Christerson, L. B., Yamamoto, Y., Kwak, Y. T., Xu, S., Mercurio, F., Barbosa, M., Cobb, M. H. and Gaynor, R. B. (1998) HTLV-I Tax protein binds to MEKK1 to stimulate IkappaB kinase activity and NF-kappaB activation. Cell 93, 875-884 https://doi.org/10.1016/S0092-8674(00)81447-6
  40. Yoshida, H., Kato, N., Shiratori, Y., Otsuka, M., Maeda, S., Kato, J. and Omata, M. (2001) Hepatitis C virus core protein activates nuclear factor kappa B-dependent signaling through tumor necrosis factor receptor-associated factor. J. Biol. Chem. 276, 16399-16405 https://doi.org/10.1074/jbc.M006671200

Cited by

  1. NF-κB activation by the viral oncoprotein StpC enhances IFN-γ production in T cells vol.86, pp.7, 2008, https://doi.org/10.1038/icb.2008.43
  2. ORF3 of Hepatitis E Virus Inhibits the Expression of Proinflammatory Cytokines and Chemotactic Factors in LPS-Stimulated Human PMA-THP1 Cells by Inhibiting NF-κB Pathway vol.29, pp.2, 2016, https://doi.org/10.1089/vim.2015.0107
  3. Expanding role of ubiquitination in NF-κB signaling vol.21, pp.1, 2011, https://doi.org/10.1038/cr.2010.170
  4. The TRAF-Interacting Protein (TRIP) Is a Regulator of Keratinocyte Proliferation vol.131, pp.2, 2011, https://doi.org/10.1038/jid.2010.329
  5. Nonproteolytic Functions of Ubiquitin in Cell Signaling vol.33, pp.3, 2009, https://doi.org/10.1016/j.molcel.2009.01.014
  6. Modulation of NF-κB signalling by microbial pathogens vol.9, pp.4, 2011, https://doi.org/10.1038/nrmicro2539