802.11 Ad Hoc LANs with Realistic Channels : Study of Packet Fragmentation

  • Kim, Chesoong (Department of Industrial Engineering, Sangji University) ;
  • Lee, Seokjun (School of Business Administration, Sangji University) ;
  • Lyakhov, Andrey (Institute for Information Transmission Problems of RAS) ;
  • Vishnevsky , Vladimir (Institute for Information Transmission Problems of RAS)
  • Published : 2007.09.30

Abstract

In this paper, we present an analytical method for estimating the saturation throughput of an 802.11 ad hoc LAN in the presence of noise distorting transmitted frames. This is the first method that allows studying analytically the 802.11 network performance with consideration of correlated channel failures usually inherent to realistic wireless channels. With the study, we consider the possible packet fragmentation that can be adopted to reduce the performance degradation caused by noise-induced distortions. In addition to the throughput, our method allows estimating the probability of a packet rejection occurring when the number of packet transmission retries attains its limit. The obtained numerical results of investigating 802.11 LANs by the developed method are validated by simulation and show high estimation accuracy as well as the method efficiency in determining the optimal fragmentation threshold.

Keywords

References

  1. Anastasi, G. and Lenzini, L. (2000), QoS provided by the IEEE 802.11 Wireless LAN to advanced Data Applications: a Simulation Analysis, Wireless Networks, 32(6), 99-108
  2. ANSl/IEEE Std 802.11(1999), Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications
  3. Bianchi, G. (2000), Performance Analysis of the IEEE 802.11 Distributed Coordination Function, IEEE Journal on Selected Areas in Communications, 18, 535-547 https://doi.org/10.1109/49.840210
  4. Bruno, R., Conti M., and Gregori E. (2001), A Simple Protocol for the Dynamic Tuning of the Backoff Mechanism in IEEE 802.11 Networks, Computer Networks, 37(1), 33-44 https://doi.org/10.1016/S1389-1286(01)00197-9
  5. Cali, F., Conti, M. and Gregory E. (2000), Dynamic Tuning of the IEEE 802.11 Protocol to Achieve a Theoretical Throughput Limit, IEEE/ACM Transactions on Networking, 8, 785-799 https://doi.org/10.1109/90.893874
  6. Chatzimisios, P. and Vitsas V. (2004), Performance Analysis of IEEE 802.11 DCF in Presence of Transmission Errors, In Proc. IEEE ICC'04, Paris, France, June
  7. Chhaya, H. S. and Gupta S. (1997), Performance Modeling of Asynchronous Data Transfer Methods of IEEE 802.11 MAC Protocol, Wireless Networks, 3(3), 217-234 https://doi.org/10.1023/A:1019109301754
  8. Chien, C. and Lettieri, P. (1999), Adaptive Radio for Multimedia Wireless Links, IEEE JSAC, 17(5), 793-813
  9. Fethi, F. (2005), Link-Layer Fragmentation and Retransmission Impact on TCP Performance in 802.11-Based Networks, In Proc. 7th IFIP International Conference on Mobile and Wireless Communications Networks (MWCN), Marrakech, Marrocco, September
  10. Gilbert, E. N. (1960), Capacity of a Burst-Noise Channel, Bell Systems Technical Journal, 39, 1253-1265 https://doi.org/10.1002/j.1538-7305.1960.tb03959.x
  11. He, J. H., Tang, Z. Y. and Yang, Z. K. (2002), Performance evaluation of distributed access scheme in error-prone channel, Proceedings of IEEE TENCON 2002, 2, 1142-1145
  12. Ho, T. S. and Chen, K. C. (1996), Performance Analysis of IEEE 802.11 CSMAlCA Medium Access Control Protocol, Proc. of the 7th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'96), Taipei, Taiwan, 407-411
  13. Kim, B. S., Fang, Y. and Wong, T. F. (2005), Throughput Enhancement Through Dynamic Fragmentation in Wireless LANs, IEEE Transactions on Vehicular Technology, 54(4), 1415-1425 https://doi.org/10.1109/TVT.2005.851361
  14. Lyakhov, A. I. and Vishnevsky, V. M. (2003), Optional Tools of the 802.11 protocol: Study in Saturation, Proc. Int. Workshop 'Distributed Computer and Communication Networks (Stochastic Modelling and Optimization)' (DCCN2003). Moscow, Russia, June 29-July 5, 28-44
  15. Lyakhov, A. I. and Vishnevsky, V. M. (2004), Packet Fragmentation in 802.11 Ad Hoc Networks with Correlated Channel Failures, Proc. lst IEEE Int. Con[. on Mobile Ad-hoc and Sensor Systems (MASS 2004), October 24-27, Fort Lauderdale, Florida, USA
  16. Lyakhov, A. I. and Vishnevsky, V. M. (2005), Comparative Study of 802.11 DCF and its Modification in the Presence of Noise, Wireless Networks, 11(6), 729-740 https://doi.org/10.1007/s11276-005-3527-4
  17. Nadeem, T. and Agrawala, A. (2004), IEEE 802.11 DCF Enhancements for Noisy Environments, Proc. IEEE PIMRC'04, Barcelona, Spain, Sep.2004
  18. Ni, Q., Li, T., Turletti, T., and Xiao Y. (2005), Saturation Throughput Analysis of Error-Prone 802.11 Wireless Networks. Wiley Journal of Wireless Communications and Mobile Computing (JWCMC), 5(8), 945-956 https://doi.org/10.1002/wcm.358
  19. Schriber, T. J. (1974), Simulation using GPSS, John Wiley & Sons
  20. Tay, Y. C. and Chua K. C. (2001), A capacity Analysis for the IEEE 802.11 MAC Protocol, Wireless Networks, 1(2), 159-171
  21. Tourrihes, J. (2001), Fragment Adaptive Reduction: Coping with Various Interferers in Radio Unlicensed Bands, Proc. IEEE ICC'0I, Helsinki, Finland
  22. Velkov, Z. H. and Spasenovski, B. (2003), Saturation throughput-delay analysis of IEEE 802.11 DCF in fading channel, Proc. of IEEE ICC 2003, 121-126
  23. Vishnevsky, V. M. and Lyakhov, A. I. (2002), IEEE 802.11 Wireless LAN: Saturation Throughput Analysis with Seizing Effect Consideration, Cluster Computing, 5, 535-548
  24. Vishnevsky, V. M. and Lyakhov, A. I. (2002), 802.11 LANs : Saturation Throughput in the Presence of Noise, Proc of the 2nd International IFJP TC6 Networking Conference (Networking '2002), Pisa, Italy.-Lecture Notes in Computer Science, 2345, 1008-1019
  25. Wang, H. S. and Moayeri, N. (1995), A Useful Model for Radio Communication Channel, IEEE Transactions on Vehicular Technology, 44, 163-171 https://doi.org/10.1109/25.350282
  26. Willig, A., Kubisch, M., Hoene, C. and Wolisz, A. (2002), Measurements of a Wireless Link in an Industrial Environment using an IEEE 802.11-Compliant Physical Layer, IEEE Transactions on Industrial Electronics, 43, 1265-1282
  27. Xi, Y., Wei, 1. B., Zhuang, Z. W. and Kim, B. S. (2006), Performance Evaluation, Improvement and Channel Adaptive Strategy for IEEE 802.11 Fragmentation Mechanism, Proc. of the 11th IEEE Symposium on Computers and Communications (ISCC 2006), Cagliari, Sardinia, Italy, 142-148
  28. Yeo, J. and Agrawala, A. (2003), Packet Error Model for the IEEE 802.11 MAC Protocol, Proc IEEE PIMRC'03, Beijing, China
  29. Yin, J., Wang, C., and Agrawal, D. P. (2004), Optimal packet size in errorprone channel for IEEE 802.11 distributed coordination function, Proc. of IEEE WCNC 2004, 1654-1659
  30. Zorzi, M. and Rao, R. R. (1997), On statistics of block errors in bursty channels, IEEE Transactions on Communications, 45(6), 660-667 https://doi.org/10.1109/26.592604