DOI QR코드

DOI QR Code

Protective Effect of Polysaccharide Fractions from Radix A. Sinensis against tert-Butylhydroperoxide Induced Oxidative Injury in Murine Peritoneal Macrophages

  • Yang, Xingbin (Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University) ;
  • Zhao, Yan (Faculty of Pharmaceutical Sciences, Fourth Military Medical University) ;
  • Lv, You (Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University) ;
  • Yang, Ying (Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University) ;
  • Ruan, Yun (Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University)
  • Published : 2007.11.30

Abstract

Three Angelica sinensis polysaccharide fractions (APFs), named APF1, APF2 and APF3, were isolated and purified from Radix A. sinensis and their antioxidant activities were evaluated in isolated mouse peritoneal macrophages by pretreatment with APFs before exposure to 0.2 mM tertbutylhydroperoxide (t-BHP). The results showed that pretreatment of the macrophages with APFs as low as $10{\mu}g$/ml could significantly enhance t-BHP-decreased cell survival, intracellular glutathione (GSH) content and superoxide dismutase (SOD) activity, and also inhibited t-BHP-increased lactate dehydrogenase (LDH) leakage and malondialdehyde (MDA) formation (p < 0.05), and APF3 was the most active fraction, followed by APF2 and APF1 in decreasing order. Furthermore, we found for the first time that the bound-protein in APF3 was associated closely with the protective effects and the polysaccharide inhibited the excess NO release from t-BHP-activated macrophages to protect host cells.

Keywords

References

  1. Abe, K., McKibbin, J. M. and Hakomori, S. (1983) The monoclonal antibody directed to difucosylated type 2 chain (Fuc alpha 1 leads to 2Ga1 beta 1 leads to 4[Fuc alpha 1 leads to 3]G1cNAc; Y determinant). J. Biol. Chem. 258, 11793-11797.
  2. Bonnefont-Rousselot, D., Bastard, J. P., Jaudon, M. C. and Delattre, J. (2000) Consequences of the diabetic status on the oxidant/ antioxidant balance. Diabetes Metab. 26, 163-176.
  3. Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D. and Mitchell, J. B. (1987) Evaluation of a tetrazolium-based semiautomatic colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47, 936-942.
  4. Chen, A. S., Taguchi, T., Sakai, K., Kikuchi, K., Wang, M. W. and Miwa, I. (2003) Antioxidant activities of chitobiose and chitotriose. Biol. Pharm. Bull. 26, 1326-1330. https://doi.org/10.1248/bpb.26.1326
  5. Deng, S., Chen, S. N., Yao, P., Nikolic, D., van Breemen, R. B., Bolton, J. L., Fong, H. H., Farnsworth, N. B. and Bolton, J. L. (2006) Serotonergic activity-guided phytochemical investigation of the roots of Angelica sinensis. J. Nat. Prod. 69, 536-541. https://doi.org/10.1021/np050301s
  6. Dipti, K. P., Sharma, S. K., Sairam, M., Ilavazhagan, G., Sawhney, R. C. and Banerjee, P. K. (2006) Flavonoids protect U-937 macrophages against tert-butylhydroperoxide induced oxidative injury. Food Chem. Toxicol. 44, 1024-1030. https://doi.org/10.1016/j.fct.2005.12.005
  7. Fang, X. B., Jiang, B. and Wang, X. L. (2006) Purification and partial characterization of an acidic polysaccharide with complement fixing ability from the stems of Avicennia marina. J. Biochem. Mol. Biol. 39, 546-555. https://doi.org/10.5483/BMBRep.2006.39.5.546
  8. Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S. and Tannenbaum, S. R. (1982) Analysis of nitrate in biological fluids. Anal. Biochem. 126, 131-138. https://doi.org/10.1016/0003-2697(82)90118-X
  9. Han, S. H., Espinoza, L. A., Liao, H. L., Boulares, A. H. and Smulson, M. E. (2004) Protection by antioxidants against toxicity and apoptosis induced by the sulphur mustard analog 2- chloroethylethyl sulphide (CEES) in Jurkat T cells and normal human lymphocytes. Brit. J. Pharmacol. 141, 795-802. https://doi.org/10.1038/sj.bjp.0705591
  10. Han, Y., zhao, L., Yu, Z., Feng, J. and Yu, Q. (2005) Role of mannose receptor in oligochitosan-mediated stimulation of macrophage function. Int. Immunopharmacol. 5, 1533-1542. https://doi.org/10.1016/j.intimp.2005.04.015
  11. Jeong, S. C., Jeong, Y. T., Yang, B. K. and Song, C. H. (2006) Chemical characteristics and immuno-stimulating properties of biopolymers extracted from Acanthopanax sessiliflorus. J. Biochem. Mol. Biol. 39, 84-90. https://doi.org/10.5483/BMBRep.2006.39.1.084
  12. Kim, G. Y., Choi, G. S., Lee, S. H. and Park, Y. M. (2004) Acidic polysaccharide isolated from Phellinus linteus enhances through the up-regulation of nitric oxide and tumor necrosis factor-$\alpha$ from peritoneal macrophages. J. Ethnopharmacol. 95, 69-76. https://doi.org/10.1016/j.jep.2004.06.024
  13. Kim, H. H., Bang, S. S., Choi, J. S., Han, H., Kim, I. H. (2005) Involvement of PKC and ROS in the cytotoxic mechanism of anti-leukemic decursin and its derivatives and their structureactivity relationship in human K562 erythroleukemia and U937 myeloleukemia cells. Cancer Lett. 223, 191-201. https://doi.org/10.1016/j.canlet.2004.10.025
  14. Kim, N. H. and Kang, J. H. (2006) Oxidative damage of DNA induced by the cytochrome c and hydrogen peroxide system. J. Biochem. Mol. Biol. 39, 452-456. https://doi.org/10.5483/BMBRep.2006.39.4.452
  15. Lao, S. C., Li, S. P., Kan, K. K. W., Li, P., Wan, J. B., Wang, Y. T., Dong, T. T. X. and Tsim, K.W. K. (2004) Identification and quantification of 13 components in Angelica sinensis (Danggui) by gas chromatography-mass spectrometry coupled with pressurized liquid extraction. Anal. Chim. Acta 526, 131-137. https://doi.org/10.1016/j.aca.2004.09.050
  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
  17. Lu, G. H., Chan, K., Chan, C. L., Leung, K., Jiang, Z. H., Zhao, Z. Z. (2004) Quantification of ligustilides in the roots of Angelica sinensis and related umbelliferous medicinal plants by highperformance liquid chromatography and liquid chromato-graphymass spectrometry. J. Chromatogr. A 1046, 101-107. https://doi.org/10.1016/j.chroma.2004.06.083
  18. MacMicking, J., Xie, Q. W. and Nathan, C. (1997) Nitric oxide and macrophage function. Annu. Rev. Immunol. 15, 323-350. https://doi.org/10.1146/annurev.immunol.15.1.323
  19. Majeti, N. V. and Ravi Kumar, R. (2000) A review of chitin and chitosan. React. Funct. Polym. 46, 1-27. https://doi.org/10.1016/S1381-5148(00)00038-9
  20. Mansour, H. H., Hafez, H. F. and Fahmy, N. M. (2006) Silymarin modulates cisplatin-induced oxidative stress and hepatotoxicity in rats. J. Biochem. Mol. Biol. 39, 656-661. https://doi.org/10.5483/BMBRep.2006.39.6.656
  21. Mi, Y. L., Zhang, C. Q. (2005) Protective effect of quercetin on aroclor 1254-induced oxidative damage in cultured chicken sermatogonial cells. Toxicol. Sci. 88, 545-550. https://doi.org/10.1093/toxsci/kfi333
  22. Morrison, D. C. and Jacobs, D. M. (1976) Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochemistry 13, 813-818. https://doi.org/10.1016/0019-2791(76)90181-6
  23. Mossman, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  24. Palmer, R. M. J., Ashton, D. S. and Moncada, S. (1988). Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333, 664-666. https://doi.org/10.1038/333664a0
  25. Rojas, A., Padron, J., Caveda, L., Palacios, M. and Moncada, S. (1993) Role of nitric oxide pathway in the protection against lethal endotoxemia by low dose of lipopolysaccharides. Biochem. Biophys. Res. Commun. 191, 441-446. https://doi.org/10.1006/bbrc.1993.1237
  26. Shahidi, F. and Synowiecki, J. (1991) Isolation and characterization of nutrients and value-added products from snow crab (Chinoecetes opilio) and shrimp (Pandalus borealis) processing discards. J. Agr. Food Chem. 39, 1527-1532. https://doi.org/10.1021/jf00008a032
  27. Srivastava, R. and Kulshreshtha, D. K. (1989) Bioactive polysaccharide from plants. Phytochemistry 28, 2877-2883. https://doi.org/10.1016/0031-9422(89)80245-6
  28. Sun, Y. L., Tang, J., Gu, X. H. and Li, D. Y. (2005) Water-soluble polysaccharides from Angelica sinensis (Oliv.) Diels: Preparation, characterization and bioactivity. Int. J. Biol. Macromol. 36, 283-289. https://doi.org/10.1016/j.ijbiomac.2005.07.005
  29. Sun, Y., Oberley, L. W. and Ying, L. (1988). A simple method for clinical assay of superoxide dismutase. Clin. Chem. 34, 497-500.
  30. Uchiyama, M. and Mihara, M. (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 86, 271-278. https://doi.org/10.1016/0003-2697(78)90342-1
  31. Van den Berg, J. J., Op den Kamp, J. A., Lubin, B. H., Roelofsen, B. and Kuypers, F. A. (1992) Kinetics and site specificity of hydroperoxide-induced oxidative damage in red blood cells. Free Radical Bio. Med. 12, 487-498. https://doi.org/10.1016/0891-5849(92)90102-M
  32. Wu, Q. Z. and Huang, K. X. (2006) Protective effect of ebselen on cytotoxicity induced by cholestane-3 beta, 5 alpha, 6 beta-triol in ECV-304 cells. Biochim. et Biophys. Acta 1761, 350-359. https://doi.org/10.1016/j.bbalip.2006.02.017
  33. Wu, J. H., Xu, C., Shan, C. Y. and Tan, R. X. (2006) Antioxidant properties and PC12 cell protective effects of APS-1, a polysaccharide from Aloe vera var. chinensis. Life Sci. 78, 622-630. https://doi.org/10.1016/j.lfs.2005.05.097
  34. Yang, X. B., Zhao, Y., Wang, Q. W., Wang, H. F. and Mei, Q. B. (2005). Analysis of the monosaccharide components of Angelica polysaccharides by high performance liquid chromatography. Anal. Sci. 21, 1177-1180. https://doi.org/10.2116/analsci.21.1177
  35. Zhao, K. J., Dong, T. T. X., Tu, P. F., Song, Z. H., Lo, C. K. and Tsim, K. W. K. (2003) Molecular genetic and chemical assessment of radix Angelica (Danggui) in China. J. Agr. Food Chem. 51, 2576-2583. https://doi.org/10.1021/jf026178h

Cited by

  1. Role of Bone Morphogenetic Proteins-7 (BMP-7) in the Renal Improvement Effect of DangGui (Angelica sinensis) in Type-1 Diabetic Rats vol.2011, 2011, https://doi.org/10.1155/2011/796723
  2. Assessment and comparison of immunoregulatory activity of four hydrosoluble fractions of Angelica sinensis in vitro on the peritoneal macrophages in ICR mice vol.10, pp.4, 2010, https://doi.org/10.1016/j.intimp.2010.01.004
  3. The immunological and antioxidant activities of polysaccharides extracted from Enteromorpha linza vol.57, 2013, https://doi.org/10.1016/j.ijbiomac.2013.03.006
  4. Bioactivity of sulfated polysaccharides from the edible red seaweed Mastocarpus stellatus vol.3, pp.1, 2014, https://doi.org/10.1016/j.bcdf.2014.01.002
  5. Bioactivities of major constituents isolated from Angelica sinensis (Danggui) vol.6, pp.1, 2011, https://doi.org/10.1186/1749-8546-6-29
  6. Protective effects of steroids fromAllium chinenseagainst H2O2-induced oxidative stress in rat cardiac H9C2 cells vol.24, pp.3, 2010, https://doi.org/10.1002/ptr.2964
  7. An Antioxidant Phytotherapy to Rescue Neuronal Oxidative Stress vol.2011, 2011, https://doi.org/10.1093/ecam/nen053
  8. Multifunctional antioxidant activity of polysaccharide fractions from the soybean byproduct okara vol.82, pp.2, 2010, https://doi.org/10.1016/j.carbpol.2010.04.020
  9. The Suppressive Effects of Bursopentine (BP5) on Oxidative Stress and NF-ĸB Activation in Lipopolysaccharide-activated Murine Peritoneal Macrophages vol.29, pp.1-2, 2012, https://doi.org/10.1159/000337581
  10. The Protective Effects of the Active Fraction of Shaofu Zhuyu Decoction on Hydrogen Peroxide-Induced Oxidative Injury in Vascular Smooth Muscle Cells vol.15, pp.8, 2010, https://doi.org/10.3390/molecules15085066