DOI QR코드

DOI QR Code

Protective Effects of Histidine Dipeptides on the Modification of Neurofilament-L by the Cytochrome c/Hydrogen Peroxide System

  • Kim, Nam-Hoon (Department of Genetic Engineering, Cheongju University) ;
  • Kang, Jung-Hoon (Department of Genetic Engineering, Cheongju University)
  • Published : 2007.01.31

Abstract

Neurofilament-L (NF-L) is a major element of the neuronal cytoskeleton and is essential for neuronal survival. Moreover, abnormalities in NF-L result in neurodegenerative disorders. Carnosine and the related endogeneous histidine dipeptides prevent protein modifications such as oxidation and glycation. In the present study, we investigated whether histidine dipeptides, carnosine, homocarnosine, or anserine protect NF-L against oxidative modification during reaction between cytochrome c and $H_2O_2$. Carnosine, homocarnosine and anserine all prevented cytochrome c/$H_2O_2$-mediated NF-L aggregation. In addition, these compounds also effectively inhibited the formation of dityrosine, and this inhibition was found to be associated with the reduced formations of oxidatively modified proteins. Our results suggest that carnosine and histidine dipeptides have antioxidant effects on brain proteins under pathophysiological conditions leading to degenerative damage, such as, those caused by neurodegenerative disorders.

Keywords

References

  1. Abe, H. (1995) Histidine-related dipeptides: distribution, metabolism and physiological function; in Biochemistry and Molecular Biology of Fishes, Hochachka, P. W. and Mommensen, T. P. (eds), pp. 310-333, Elsevier Science, Amsterdam, Netherlands.
  2. Aldini, G., Carini, M., Beretta, G., Bradamante, S. and Facino, R. M. (2002) Carnosine is a quencher of 4-hydroxy-nonenal: through what mechanism of reaction? Biochem. Biophys. Res. Commun. 298, 699-706. https://doi.org/10.1016/S0006-291X(02)02545-7
  3. Atwood, C. S., Perry, G., Zeng, H., Kato, Y., Jones, W. D., Ling, K. Q., Huang, X., Moir R. D., Wang, D., Sayre, L. M., Smith, M. A., Chen, S. G. and Bush, A. I. (2004) Copper mediates dityrosine cross-linking of Alzheimer's amyloid-beta. Biochemistry 43, 560-568. https://doi.org/10.1021/bi0358824
  4. Auroma, O. I., Laughton, M. J. and Halliwell, B. (1989) Carnosine, homocarnosine and anserine: could they act as antioxidants in vivo? Biochem. J. 264, 863-869. https://doi.org/10.1042/bj2640863
  5. Boldyrev, A. and Abe, H. (1999) Metabolic transformation of neuropeptide carnosine modifies its biological activity. Cell Mol. Neurobiol. 19, 163-175. https://doi.org/10.1023/A:1006914028195
  6. Boldyrev, A., Abe, H., Stvolinsky, S. L. and Tyulina, O. V. (1995) Effects of carnosine and related compounds on generation of free radical species: a comparative study. Comp. Biochem. Physiol. B 112, 481-485. https://doi.org/10.1016/0305-0491(95)00084-4
  7. Boldyrev, A. A., Dupin, A. M., Pindel, E. V. and Severin, S. E. (1988) Antioxidative properties of histidine-containing dipeptides from skeletal muscles of vertebrates. Comp. Biochem. Physiol. 89, 245-250. https://doi.org/10.1016/0305-0491(88)90218-0
  8. Brown, C. E. (1981) Interactions among carnosine, anserine, ophidine and copper in biochemical adaption. J. Theor. Biol. 88, 245-256. https://doi.org/10.1016/0022-5193(81)90073-4
  9. Crush, K. G. (1970) Carnosine and related substances in animal tissues. Comp. Biochem. Physiol. 34, 3-10. https://doi.org/10.1016/0010-406X(70)90049-6
  10. Eum, W. S., Choi, H. S., Kim, D. W., Jang, S. H., Choi, S. H., Kim, S. Y., Park, J., Kang, J. H., Cho, S.-W., Kwon, O.-S., Hwang, I. K., Yoo, K.-Y., Kang, T.-C., Won, M. H. and Choi, S. Y. (2005) Production and characterization of monoclonal antibodies against human ceruloplasmin. J. Biochem. Mol. Biol. 38, 71-76. https://doi.org/10.5483/BMBRep.2005.38.1.071
  11. Forno, L. S. (1986) The lewy body in Parkinson's disease. Adv. Neurol. 45, 35-42.
  12. Forno, L. S. (1996) Neuropathology of Parkinson's disease. J. Neuropathol. Exp. Neurol. 55, 259-272. https://doi.org/10.1097/00005072-199603000-00001
  13. Giulivi, C. and Davies, K. J. (1993) Dityrosine and tyrosine oxidation products are endogenous markers for the selective proteolysis of oxidatively modified red blood cell hemoglobin by (the 19 S) proteosome. J. Biol. Chem. 268, 8752-8759.
  14. Gorman, A. M., McGowan, A., O'Neill, C. and Cotter, T. (1996) Oxidative stress and apoptosis in neurodegeneration. J. Neurol. Sci. 139, 45-52. https://doi.org/10.1016/0022-510X(96)00097-4
  15. Gulewitsch, W. and Amiradzibi, S. (1900) Ueber das carnosin, eine neue organische base des fleischextractes. Ber. Dtsh. Chem. Ges. 33, 1902-1903. https://doi.org/10.1002/cber.19000330275
  16. Hartman, P. E., Hartman, Z. and Ault, K. T. (1990) Scavenging of singlet molecular oxygen by imidazole compounds: high and sustained activities of carboxy terminal histidine dipeptides and exceptional activity of imidazole-4-acetic acid. Photochem. Photobiol. 51, 59-66. https://doi.org/10.1111/j.1751-1097.1990.tb01684.x
  17. Heinecke, J. W., Li, W., Daehnke 3rd, H. L. and Goldstein, J. A. (1993) Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydogen peroxide system of human neutrophils and macrophages. J. Biol. Chem. 268, 4069-4077.
  18. Huggins, T. G., Wells-Knecht, M. C., Detorie, N. A., Baynes, J. W. and Thorpe, S. R. (1993) Formation of o-tyrosine and dityrosine in proteins during radiolytic and metal-catalyzed oxidation. J. Biol. Chem. 268, 12341-12347.
  19. Kato, Y., Kitamoto, N., Kawai, Y. and Osawa, T. (2001) The hydrogen peroxide/copper ion system, but not other metalcatalyzed oxidation systems, produces protein-bound dityrosine. Free Radic. Biol. Med. 31, 624-632. https://doi.org/10.1016/S0891-5849(01)00623-2
  20. Kim, N. H. and Kang, J. H. (2003) Oxidative modification of neurofilament-L by copper-catalyzed reaction. J. Biochem. Mol. Biol. 36, 488-492. https://doi.org/10.5483/BMBRep.2003.36.5.488
  21. Kim, N. H. and Kang, J. H. (2006) Oxidative damage of DNA induced by the cytochrome c and hydrogen peroxide system. J. Biochem. Mol. Biol. 39, 452-456. https://doi.org/10.5483/BMBRep.2006.39.4.452
  22. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  23. Lansbury, P. T. Jr. (1999) Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc. Natl. Acad. Sci. USA 96, 3342-3344.
  24. Ma, Y., Ogino, T., Kawabata, T., Eguchi, K. and Okada, S. (1999) Cupric nitrilotriacetate-induced apoptosis in HL-60 cells association with lipid peroxidation, release of cytochrome c from mitochondria, and activation of caspase-3. Free Radic. Biol. Med. 27, 227-233. https://doi.org/10.1016/S0891-5849(99)00083-0
  25. O'Dowd, J. J., Robins, D. J. and Miller, D. L. (1988) Detection, characterization, and quantification of carnosine and other histidyl derivatives in cardiac and skeletal muscle. Biochim. Biophys. Acta 967, 241-249. https://doi.org/10.1016/0304-4165(88)90015-3
  26. Olteanu, A. and Pielak, G. J. (2004) Peroxidative aggregation of asynuclein requires tyrosines. Protein Sci. 13, 2852-2856. https://doi.org/10.1110/ps.04947204
  27. Parker, W, D, Jr and Swerdlow, R. H. (1998) Mitochondrial dysfunction in idiopathic Parkinson disease. Am. J. Hum. Genet. 62, 758-762. https://doi.org/10.1086/301812
  28. Pollanen, M. S., Dickson, D. W. and Bergeron, C. (1993) Pathology and biology of the Lewy body. J. Neuropathol. Exp. Neurol. 52, 183-191. https://doi.org/10.1097/00005072-199305000-00001
  29. Radi, R., Thomson, L., Rubbo, H. and Prodanov, E. (1991a) Cytochrome c-catalyzed oxidation of organic molecules by hydrogen peroxide. Arch. Biochem. Biophys. 288, 112-117. https://doi.org/10.1016/0003-9861(91)90171-E
  30. Radi, R., Sims, S., Cassina, A. and Turrens, J. F. (1993b) Roles of catalase and cytochrome c in hydroperoxide-dependent lipid peroxidation and chemiluminescence in rat heart and kidney mitochondria. Free Radic. Biol. Med. 15, 653-659. https://doi.org/10.1016/0891-5849(93)90169-U
  31. Reed, J. C. (1997) Cytochrome c: can't live with it-can't live without it. Cell 91, 559-562. https://doi.org/10.1016/S0092-8674(00)80442-0
  32. Schapira, A. H. (1994) Evidence for mitochondrial dysfunction in Parkinson's disease-a critical appraisal. Mov. Disord. 9, 125-138. https://doi.org/10.1002/mds.870090202
  33. Schapira, A. H. (1999) Mitochondrial involvement in Parkinson's disease, Huntington's disease, hereditary spastic paraplegia and Friedreich's ataxia. Biochim. Biophys. Acta 1410, 159-170. https://doi.org/10.1016/S0005-2728(98)00164-9
  34. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F.-H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76-85. https://doi.org/10.1016/0003-2697(85)90442-7
  35. Stridh, H., Kimland, M., Jones, D. P., Orrenius, S. and Hampton, M. B. (1998) Cytochrome c release and caspase activation in hydrogen peroxide- and tributyltin- induced apoptosis. FEBS Lett. 429, 351-355. https://doi.org/10.1016/S0014-5793(98)00630-9
  36. Trojanoski, J. Q., Schmidt, M. L., Shin, R.-W., Bramblett, G. T., Rao, D. and Lee, V. M.-Y. (1993) Altered tau and neurofilament proteins in neurodegenerative diseases: Diagnostic implications for Alzheimer's disease and Lewy body dementias. Brain Pathol. 3, 45-54. https://doi.org/10.1111/j.1750-3639.1993.tb00725.x

Cited by

  1. An efficient method for clonal propagation and in vitro establishment of softwood shoots from epicormic buds of teak (Tectona grandis L.) vol.11, pp.2, 2009, https://doi.org/10.1007/s11632-009-0018-1
  2. Dysautonomia in Autism Spectrum Disorder: Case Reports of a Family with Review of the Literature vol.2011, 2011, https://doi.org/10.1155/2011/129795
  3. Protective Role of Histidine Supplementation Against Oxidative Stress Damage in the Management of Anemia of Chronic Kidney Disease vol.11, pp.4, 2018, https://doi.org/10.3390/ph11040111