Settling Velocity of Phytoplankton in the Nakdong-River

낙동강 수계의 식물플랑크톤 침강속도

  • Jung, Yukyong (Department of Environmental Science, Kangwon National University) ;
  • Kim, Bomchul (Department of Environmental Science, Kangwon National University) ;
  • Shin, Myoungsun (Department of Environmental Science, Kangwon National University) ;
  • Park, Ju-Hyun (National Institute of Environmental Research)
  • Received : 2007.08.30
  • Accepted : 2007.10.31
  • Published : 2007.11.30

Abstract

Settling velocity is one of major parameters determining algal biomass in water quality modeling. In this study, the settling velocity of phytoplankton was measured in reservoir and stream sites of the Nakdong River, Korea. Settling velocities of various phytoplankton species were determined by measuring algal cell biomass settled in a sedimentation cylinder. Mean settling velocities were $0.22m\;day^{-1}$ in reservoir sites and $0.33m\;day^{-1}$ in stream sites, which were relatively higher compared with other default values suggested by water quality models (e.g. $0.1m\;day^{-1}$ in CE-QUAL-W2). The lower settling velocity in reservoirs than in stream implies the adaptation of phytoplakton to low turbulence in lentic environments. Cyanobacteria showed lower settling velocity ($0.2m\;day^{-1}$) than diatoms ($0.3m\;day^{-1}$), and this phenomenon may have resulted from buoyancy mechanisms of cyanobacteria. Cell volume did not show a significant correlation with settling velocity in this study, implying that conformation factors of colonies or other factors had large effects on settling velocity of algal cells as well as cell size. The result of this study may suggest proper coefficients of settling velocity of phytoplankton in the calibration of water quality model.

Keywords

References

  1. 김범철 외 15 명,낙동강수계 수중생태계 수질모델인자 조사,국립환경연구원 (2003)
  2. 김범철,사승환,김문숙,이윤경,김재구,국내 호수의 제한 영양소와 하수처리장 방류수 인기준 강화의 필요성,한국물환경학회지,23(4),pp. 512-517 (2007)
  3. 김용재,낙동강 중 하류의 식물플랑크톤 군집의 월 변화,Algae, 19(4), pp. 329-337 (2004) https://doi.org/10.4490/ALGAE.2004.19.4.329
  4. 김호섭,황순진,부영양 저수지에서 식물플랑크톤 성장에 대한 제한영양염과 질소/인 비의 영향,한국육수학회지,37(1), pp. 36-46 (2004)
  5. 박혜경,이문호,유재근,AGP spike test에 의한 국내 대형댐호의 조류생장 제한 영양염의 추정,한국물환경학회지,8(3), pp. 159-166 (1992)
  6. 선성교,백경훈,송미경,낙동강 중 하류에서 클로로필 a 최대농도 출현지역 평가,한국육수학회지,35(1), pp. 21-27 (2002)
  7. 신재기,이옥희,조경제,진양호와 남강의 수질에 대한 Algal growth potential test(AGPT) 적용,한국육수학회지, 36(1), pp. 57-65 (2003a)
  8. 신재기,황순진,평택호와 유역 하천에서 조류생장잠재력 측정,한국육수학회지,36(2), pp. 172-180 (2003b)
  9. 이정호,권정남,양상용,낙동강의 식물플랑크톤 군집의 계절 변화,Algae, 17(4), pp. 267-273 (2002a) https://doi.org/10.4490/ALGAE.2002.17.4.267
  10. 이주동,최상준,김영훈,김한순,이정호,담수 규조류 침전거동 첨강속도 측정을 중심으로,한국물환경학회지,18(6), pp. 683-692 (2002b)
  11. 조경제,신재기,낙동강 주요 담수조류의 생장 및 영양염 반포화 계수, Algae, 13(2), pp. 235-240 (1998a)
  12. 조경제,신재기,낙동강 하류에서 동 하계 무기 N, P 영양 염류와 식물플랑크톤의 동태,한국육수학회지,31(1), pp. 67-75 (1998b)
  13. 최광현,황순진,김호섭,한명수,팔당호 식물플랑크톤의 제한영양염과 성장률의 경시적 변화,한국육수학회지,36(2), pp. 139-149 (2003)
  14. 허우명,김범철,황길순,최광순,박원규,낙동강 수계의 인,질소 및 Chl.a 농도 분포,한국육수학회지,28(2), pp. 175-181 (1995)
  15. APHA, Standard methods for the examination of water and wastewater, 20th ed. (1998)
  16. Baca, R. G. and Arnett, R. C., A Limnological Model for Eutrophic Lakes and Impoundments, Battelee, Inc., Pacific Northwest Laboratories, Richlann nnd, Washington (1976)
  17. Bienfang, P., Laws, E. and Johnson, W., Phytoplankton sinking rate determination: technical and theoretical aspects, an improved methodology, J. Esp. Mar. Biol. Eco., 30, pp. 283-300 (1977) https://doi.org/10.1016/0022-0981(77)90037-5
  18. Bienfang, P., A new phytoplankton sinking rate method suitable for field use, Deep-Sea Research, 26(6A), pp. 719-729 (1979) https://doi.org/10.1016/0198-0149(79)90043-8
  19. Burns, N. M. and Rosa, F., In situ measurement of settling velocity of organic carbon particles and 10 species of phytoplankton, Limnol. Oceanogr., 25, pp. 855-864 (1980) https://doi.org/10.4319/lo.1980.25.5.0855
  20. Cole, T. and Buchak, E. M., CE-QUAL-W2: A two-dimensional, laterally averaged, hydrodynamic and water quality model, Version 2.0 User Manual, U.S. Army Corps of Enginerrs, Waterways Experiment Station, Vicksburg, MS 39180-6199 (1995)
  21. Collins, C. D. and Wlosinski, J. H., Coefficients for use in the US. Army Corps of Engineers reservoir model, CEQUAL-RI, Technical Report E-83-15, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS (1983)
  22. Eppley, R. W., Holmes, R. W. and Strickland, J. D. H., Sinking rates of marine phytoplankton measured with a fluorometer, J Esp. Mar. Biol. Eco.., 1, pp. 191-208 (1967) https://doi.org/10.1016/0022-0981(67)90014-7
  23. Harrison, P. J., Turpin, D. H. and Bienfang, P. K., Sinking as a factor affecting phytoplankton species succession: the use of selective loss semi-continuous cultures, J Esp. Mar. Biol. Eco., 99, pp. 19-30 (1986) https://doi.org/10.1016/0022-0981(86)90018-3
  24. Horne, A. J. and Goldman, C. R., Limnology, McGraw-Hill Inc, NY (1994)
  25. Judit, P., Eva, S. and Zsuzsanna, R., Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton-an experimental study, Hydrobiologia, 500, pp. 243-257 (2003) https://doi.org/10.1023/A:1024613001147
  26. Kellar, P. E., Paulson, S. A. and Paulson, L. J., Methods for biological, chemical and physical analyses in reservoirs, Tech. Rep. Lake Mead Limnological Res. Center, UNLV, NV (1980)
  27. Peperzak, L., Colijn, F., Koeman, R., Gieskes, W. W. C. and Joordens, J. C. A., Phytoplankton sinking rates in the Rhine region of freshwater influence, J Plankton Res., 25(4), pp. 365-383 (2003) https://doi.org/10.1093/plankt/25.4.365
  28. Reynolds, C. S., The ecology of freshwater phytoplankion, Cambridge University Press, NY (1984)
  29. Smayda, T. J., Some Experiments on the Sinking characteristics of two freshwater diatoms, Limnol. Oceanogr., 19(4), pp. 628-635 (1974) https://doi.org/10.4319/lo.1974.19.4.0628
  30. Thomas, O. B. Jr, Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling, 2nd ed., E.P.A., pp. 281-345 (1985)
  31. Titman, D. and Kilham, P., Sinking in freshwater phytoplankton : some ecological implications of cell nutrient status and physical mixing processes, Limnol. Oceanogr., 21(3), pp. 109-117 (1976)
  32. Walsby, A. E., Hayes, P. K., and Boje, R., The gas vesicles, buoyancy and vertical distribution of cyanobacteria in the Baltic sea, Eur. J. Phycol., 30(20), pp. 87-94 (1995) https://doi.org/10.1080/09670269500650851
  33. Waite, A., Fisher, A., Thompson, P. A. and Harrison, P. J., Sinking rate versus cell volume relationships illuminate sinking rate control mechanisms in marine diatoms, Mar. Ecol, Prog. Ser., 157, pp. 97-108 (1997) https://doi.org/10.3354/meps157097
  34. Waite, A. M. and Nodder, S. D., The effect of in situ iron addition of the sinking rates and export flux of Southern Ocean diatoms, Deep-Sea Research II, 48, pp. 2635-2654 (2001) https://doi.org/10.1016/S0967-0645(01)00012-1
  35. Welch, E. B., Homer, R. R. and Patmont, C. R., Prediction of nuisance periphytic biomass: a management approach, Water Res., 23, pp. 401-405 (1989) https://doi.org/10.1016/0043-1354(89)90130-9
  36. Wetzel, R. G., Limnology: lake and river ecosystems, Academic press, NY (2001)