Inconsistent Activities of Titanium Oxide Photocatalysts

산화티타늄 광촉매 활성의 비일관성

  • Ryu, Jungho (School of Environmental Science & Engineering Pohang University of Science and Technology) ;
  • Choi, Wonyong (School of Environmental Science & Engineering Pohang University of Science and Technology)
  • 류정호 (포항공과대학교 환경공학부) ;
  • 최원용 (포항공과대학교 환경공학부)
  • Received : 2007.06.05
  • Accepted : 2007.07.06
  • Published : 2007.08.10

Abstract

This study measured the photocatalytic activities of five $TiO_2$ samples commercially available in terms of the degradation rate of nine organic substrates. Efforts were made to correlate the activities with the properties of both catalysts and substrates but little correlation was found. The result clearly shows that the photocatalytic activities sensitively depend on the kind of the test substrates, which strongly supports the fact that the activity measured with one or two model compounds cannot represent the overall performance of a photocatalyst. Therefore, this multi-aspect and inconsistent activity of photocatalytic reaction should be fully understood prior to establish the standard protocol for the activity determination.

본 연구에서는 광촉매 활성의 다면성을 체계적으로 조사하고자 5개의 상업용 $TiO_2$ 시료와 9가지의 대상기질을 선정하여 광촉매 분해반응을 수행하였다. 광촉매 활성은 평가 대상기질에 따라 매우 상이하게 측정되는 등 매우 복잡하게 나타났고, 광촉매의 일반적 특성들과 뚜렷한 상관성을 보이지 않았다. 즉, 이러한 광촉매 반응의 기질 특이성 때문에 단일물질에 대한 활성으로 전체 광촉매 활성을 대표할 수 없고, 여러 광촉매 간의 직접적이고 객관적인 활성비교가 어렵게 된다. 따라서, 표준화된 광촉매 활성 평가법 개발을 위해서는 광촉매 반응의 기질 특이성을 이해하고 각 적용분야에 맞게 평가기준을 달리하는 등의 통합적인 노력이 요구된다

Keywords

Acknowledgement

Supported by : 학술진흥재단

References

  1. D. F. Ollis and H. Al-Ekabi, Photocatalytic Purification and Treatment of Water and Air. Elsevier, Amsterdam (1993)
  2. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev., 95, 69 (1995)
  3. J. M. Herrmann, Topics Catal., 34, 49 (2005) https://doi.org/10.1007/s11244-005-3788-2
  4. W. Choi, A. Termin, and M. R. Hoffmann, Angew. Chem. Int. Ed. Engl., 33, 1091 (1994)
  5. S. G. Hur, T. W. Kim, S.-J. Hwang, H. Park, W. Choi, S. J. Kim, and J.-H. Choy, J. Phys. Chem. B, 109, 15001 (2005)
  6. H. Park and W. Choi, J. Phys. Chem. B, 108, 4086 (2004) https://doi.org/10.1021/jp036735i
  7. F. Sabin, T. Turk, and A. Vogler, J. Photochem. Photobiol. A, 63, 99 (1992)
  8. N. Serpone, G. Sauve, R. Koch, H. Tahiri, P. Pichat, P. Piccinini, E. Pelizzetti, and H. Hidaka, J. Photochem. Photobiol. A, 94, 191 (1996)
  9. Y. Du and J. Rabani, J. Phys. Chem. B, 107, 11970 (2003) https://doi.org/10.1021/jp035491z
  10. D. Hufschmidt, D. Bahnemann, J. J. Testa, C. A. Emilio, and M. I. Litter, J. Photochem. Photobiol. A, 148, 223 (2002) https://doi.org/10.1016/S1010-6030(02)00048-5
  11. A. G. Agrios, and P. Pichat, J. Photochem. Photobiol. A, 2006, 130 (2006)
  12. D. W. Bahnemann, S. N. Kholuiskaya, R. Dillert, A. I. Kulak, and A. I. Kokorin, Appl. Catal. B, 36, 161 (2002) https://doi.org/10.1016/S0926-3373(01)00301-0
  13. T. Tatsuma, S. Tachibana, and A. Fujishima, J. Phys. Chem. B, 105, 6987 (2001) https://doi.org/10.1021/jp011108j
  14. J. Park and W. Choi, Langmuir, 20, 11523 (2004) https://doi.org/10.1021/la048051n
  15. W. Choi and M. R. Hoffmann, Environ. Sci. Technol., 29, 1646 (1995)
  16. J. Theurich, M. Lindner, and D. W. Bahnemann, Langmuir, 12, 6368 (1996)
  17. U. Stafford, K. A. Gray, and P. V. Kamat, J. Phys. Chem., 98, 6343 (1994)
  18. C. Richard, New. J. Chem., 18, 443 (1994)
  19. K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka, and A. Itaya, Bull. Chem. Soc. Jpn., 58, 2015 (1985) https://doi.org/10.1246/bcsj.58.2015
  20. V. Augugliaro, L. Palmisano, A. Sclafani, C. Minero, and E. Pelizzetti, Toxicol. Environ. Chem., 16, 89 (1988) https://doi.org/10.1080/02772248809357253