PVA 매트릭스 내에 Silver 나노 입자의 제조와 특성에 관한 연구

Studies on the Preparation and Properties of Silver Nanoparticles in the PVA Matrix

  • 정정숙 (영남대학교 응용화학공학부) ;
  • 배광수 (건동대학교 가스안전공학과) ;
  • 김병준 (영남대학교 응용화학공학부) ;
  • 유성구 (영남대학교 응용화학공학부) ;
  • 서길수 (영남대학교 응용화학공학부)
  • Jung, Jungsuk (School of Chemical Engineering & Technology, Yeungnam University) ;
  • Bae, Kwangsoo (Department of Gas & Safety Engineering, Kundong University) ;
  • Kim, Byungjun (School of Chemical Engineering & Technology, Yeungnam University) ;
  • Lyu, Sunggyu (School of Chemical Engineering & Technology, Yeungnam University) ;
  • Sur, Gilsoo (School of Chemical Engineering & Technology, Yeungnam University)
  • 투고 : 2006.11.14
  • 심사 : 2007.03.13
  • 발행 : 2007.04.10

초록

PVA 농도, $AgNO_3$ 농도, IPA의 농도, 그리고 전자빔의 조사량 등의 다양한 조건에서 PVA 매트릭스에서 은입자를 생성하기 위하여 전자 빔을 이용하였다. PVA 농도, $AgNO_3$ 농도, 그리고 IPA의 농도가 증가하고 전자빔의 조사량이 증가함에 따라서 생성된 은입자의 분포도가 증가함을 알 수 있었다. 그리고 $AgNO_3$ 농도, IPA의 농도, 그리고 전자빔의 조사량은 은입자의 생성에 중요한 변수가 됨을 확인하였다. 이러한 결과들을 XRD, UV, 그리고 TEM 등으로 확인하였다. XRD로부터 생성된 입자가 은임을 확인하였다. 생성된 은입자의 분포 및 크기 등을 연구하기 위하여 UV와 TEM을 사용하였다.

EB irradiation method was used to prepare polyvinyl alcohol (PVA) capped silver nanoparticles under various conditions including PVA concentration, $AgNO_3$ concentration, IPA concentration, and EB dosage. The increase in the distribution of particles size was observed with an increase in the concentrations of PVA, $AgNO_3$, IPA, and EB dosage. $AgNO_3$ concentration, IPA concentration, and EB dosage were found to have a great effect on the amount of silver particles formed in PVA matrix by EB irradiation method. These results were confirmed by XRD, UV, and TEM. XRD (X-ray diffraction) technique confirmed the zero valent state of silver. Optical studies were done using UV-visible spectrophotometer to see the variation of silver particles formed in PVA matrix. Transmission Electron Microscopic (TEM) was employed to show the particle size and distribution of silver foamed in PVA matrix.

키워드

과제정보

연구 과제 주관 기관 : 산업자원부

참고문헌

  1. G. Schmid, Colloids and Clusters, VHC Press, New York (1995)
  2. T. Yukimasa and S. Takemori, Metall. Rev., 6, 38 (1989)
  3. K. Nagashima, T. Himeda, and A. Kato, J. Mater. Sci., 26, 2477 (1991) https://doi.org/10.1007/BF01130198
  4. 小石眞純, 微粒子設計, 28, 工業調査會, 東京 (1987)
  5. 이호신, 강상규, 이창규, 최붕기, 나노금속분말의 제조 및 응용, 산 업자원부 심층정보분석 보고서, 14 (2002)
  6. S. Vemury, S. E. Pratsinis, and L. Kibbery, J. Mater. Res., 12, 1031 (1997) https://doi.org/10.1557/JMR.1997.0140
  7. T. Fukui, T. Oobuchi, Y. Ikuhara, S. Ohara, and K. Kodera, J. Am. Ceram. Soc., 80, 261 (1997)
  8. J. D. Lin and J. G. Duh, J. Am. Ceram. Soc., 80, 92 (1997)
  9. X. Ding, Z. Qi, and Y. He, J. Mater. Sci. Lett., 14, 21 (1995)
  10. S. Oh and S. Im, Applied Chemistry, 3, 168 (1999)
  11. J. Belloni, J. Amblard, L. Marignier, and M. Mostafavi, Cluster Atoms and Molecules In : Haberland, H.(Ed), 2. 290, Springer, Berlin (1994)
  12. J. Belloni, M. Mostafavi, H. Remita, J. L. Marignier, and M. O. Delcourt, New J. Chem., 22, 1239 (1998)
  13. M. Mostafavi, N. Keghouche, M. O. Delcourt, and J. Belloni, Radiat. Phys. Chem., 167, 167 (1990)
  14. A. Henglein and P. Mulvaney, Radiat. Phys. Chem., 94, 4182 (1990) https://doi.org/10.1021/j100373a056
  15. S. S. Joshi, S. F. Patil, V. Iyer, and S. Mahamuni, Nanostruct. Mater., 10, 1135 (1998)
  16. M. Mostafavi and J. Belloni, Radiat. Phys. Chem., 72, 111 (2005) https://doi.org/10.1016/j.radphyschem.2004.02.009
  17. M. Kumar, L. Varshney, and S. Francis, Radiat. Phys. Chem., 73, 21 (2005) https://doi.org/10.1016/j.radphyschem.2004.06.006
  18. M. K. Temgire and S. S. Joshi, Radiat. Phys. Chem., 71, 1039 (2004) https://doi.org/10.1016/j.radphyschem.2003.10.016