Carbonaceous Media for Vehicular Natural Gas Storage

자동차용 천연가스 저장을 위한 탄소매질

  • Moon, Hee (Faculty of Applied Chemical Engineering and Center for Functional Nano Chemicals Chonnam National University)
  • 문희 (전남대학교 응용화학공학과, 기능성나노신화학소재사업단)
  • Received : 2007.01.19
  • Published : 2007.02.10

Abstract

Compressed natural gas (CNG) has been used as a vehicular fuel compressed at 24.8 MPa because the energy density of natural gas is extremely low compared with gasoline. Thus it has problems in both safety and cost for multiple stage compression. For these reasons the use of adsorbed natural gas (ANG) has been pursued since the storage of natural gas is possible at a relatively low pressure. The present target is to obtain media to store natural gas at 3.5 MPa as ANG that ensures the comparable energy density of CNG, giving approximately one-fourth the driving range of an equivalent volume gasoline tank. In this review, the recent development of carbon media, their characteristics, and practical applications for natural gas storage are introduced and some recommendations are also suggested.

천연가스는 가솔린에 비하여 에너지 밀도가 매우 낮아 천연가스 차량의 경우 약 24.8 MPa로 압축된 압축천연가스(CNG)를 이용하기 때문에 고압을 얻기 위하여 다단계 압축이 요구될 뿐 아니라 안정성에 문제가 많다. 이런 이유로 비교적 낮은 압력에서 저장할 수 있는 흡착천연가스에 관심을 갖게 되었다. 천연가스의 저장에 용이한 매질을 개발하여 3.5 MPa에서 CNG와 에너지 밀도가 유사하고, 같은 용적의 가솔린에 비하여 1/4 수준의 운전거리를 확보하는 것이 현재의 목표이다. 본 총설에서는 흡착천연가스(ANG) 저장을 위한 탄소매질의 개발현황, 매질의 특성 및 실용화를 위하여 진행되고 있는 내용을 간략하게 소개하고 몇 가지 필요한 제언을 한다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. T. Burchell and M. Rogers, SAE Technical Paper Series, 2000-01-2205(2000)
  2. V. C. Menon and S. Komarneni, J. Porous Materials, 5, 43 (1998)
  3. A. L. Myers and E. D. Glandt, Adsorbed Natural Gas (ANG), Adsorption News, Quantachrome Corp., 4, 3 (1993)
  4. D. Lozano-Castello, J. Alcaniz-Monge, M. A. de la Casa-Lillo, D. Cazorla-Amoros, and A. Linares-Solano, Fuel, 81, 1777 (2002)
  5. S. S. Barton, J. R. Dacey, and D. F. Quinn, High pressure adsorption of methane on porous carbons, FOA1, 65 (1983)
  6. J. Wegrzyn, H. Wisemann, and T. Lee, SAE Proc. of Annual Automotive Technology Development, 1 (1992)
  7. D. F. Quinn, J. A. MacDonald, and K. Sosin, Amer. Chem. Soc. (Fuel Chem.), 39, 451 (1994)
  8. D. F. Quinn and J. A. Holland, US Patent 5,071,820 (1991)
  9. S. Jiang, J. A. Zollweg, and K. Gubbins, J. Phys. Chem., 98, 5709 (1994)
  10. A. Muto, T. Bhaskar, S. Tsuneishi, and Y. Sakata, Energy & Fuel, 19, 251 (2005) https://doi.org/10.1021/ef0400316
  11. O. Pupier, V. Goetz, and R. Fiscal, Chem. Eng. Processing, 44, 71 (2005) https://doi.org/10.1016/j.cep.2004.05.005
  12. H. Ogasa, M. Oku, and D. Vangundy, Performance Evaluation of an Automobile Utilizing an Adsorbed Natural Gas Tank. Honda R & D Report (1997)
  13. S. Biloe, V. Goetz, and A. Guillot, Carbon, 40, 1295 (2002) https://doi.org/10.1016/S0008-6223(01)00287-1
  14. J. P. B. Mota, A. E. Rodrigues, E. Saatdjian, and D. Tondeur, Carbon, 35, 1259 (1997)
  15. J. P. B. Mota, I. A. A. C. Esteves, and M. Rostam-Abadi, Computers Chem. Eng., 28, 2421 (2004)
  16. R. Basumatary, P. Dutta, M. Prasad, and K. Srinivasan, Carbon, 43, 541 (2005) https://doi.org/10.1016/j.carbon.2004.10.016
  17. K. J. Chang and O. Talu, Appl. Therm. Eng., 16, 359 (1996)
  18. J. Sun, M. J. Rood, M. Rostam-Abadi, and A. A. Lizzio, Gas. Sep. Purif., 10, 91 (1996)
  19. T. A. Brady, M. Rostam-Abadi, and M. J. Rood, Gas. Sep. Purif., 10, 97 (1996)
  20. M. S. Balathanigaimani, H. C. Kang, W. G. Shim, C. Kim, J. W. Lee, and H. Moon, Korean J. Chem. Eng., 23, 663 (2006) https://doi.org/10.1007/BF02706811
  21. D. Lozano-Castello, D. Cazorla-Amoros, and A. Linares-Solano, Energy & Fuel 16, 1321 (2002)
  22. J. W. Lee, M. S. Balathanigaimani, H. C. Kang, W. G. Shim, C. Kim, and H. Moon, J. Chem. Eng. Data, 52, 66 (2007) https://doi.org/10.1021/je060218m
  23. A. N. Wennerberg and T. M. O'Grady, US Patent 4,082,694 (1978)
  24. K. Kaneko, C. Ishii, M. Ruike, and H. Kuwabara, Carbon, 30, 1075 (1992) https://doi.org/10.1016/0008-6223(92)90139-N
  25. J. Alcaniz-Monge, D. Cazorla-Amoros, A. Linares-Solano, S. Yoshida, and A. Oya, Carbon, 32, 1277 (1994)
  26. E. Bekyarova, K. Murata, M. Yudasaka, D. Kasuya, S. Iijima, H. Tanaka, H. Kahoh, and K. Kaneko, J. Phys. Chem. B, 107, 4681 (2003) https://doi.org/10.1021/jp0278263
  27. H. Tanaka, E. Merraoui, W. A. Steele, and K. Kaneko, Chem. Phys. Lett., 352, 334 (2002) https://doi.org/10.1016/S0009-2614(01)01486-5
  28. J. W. Lee, H. C. Kang, W. G. Shim, C. Kim, and H. Moon, J. Chem. Eng. Data, 51, 963 (2006) https://doi.org/10.1021/je050467v
  29. Z. Tan and K. E. Gubbins, J. Phys. Chem., 94, 6061 (1992)
  30. T. K. Bose, R. Chahine, and J. M. St. Amaud, US Patent 4,999,330 (1991)
  31. C. H. Chang, L. Wang, and M. Kaiser, US Patent 5,292,706 (1994)
  32. D. M. Ruthven, Principles of adsorption and adsorption processes, John Wiley & Sons, New York (1984)
  33. K. K. Choi, W. G. Shim, C. Kim, M. S. Balathanigaimani, J. W. Lee, and H. Moon, Proc. of KIChE 2006 fall meeting, 136 (2006)