DOI QR코드

DOI QR Code

Application of X-ray Computer Tomography (CT) in Cattle Production

  • Hollo, G. (Institute of Diagnostic Imaging and Radiation Oncology, Faculty of Animal Science University of Kaposvar) ;
  • Szucs, E. (Faculty of Agricultural and Environmental Sciences, Szent Istvan University) ;
  • Tozser, J. (Faculty of Agricultural and Environmental Sciences, Szent Istvan University) ;
  • Hollo, I. (Institute of Diagnostic Imaging and Radiation Oncology, Faculty of Animal Science University of Kaposvar) ;
  • Repa, I. (Institute of Diagnostic Imaging and Radiation Oncology, Faculty of Animal Science University of Kaposvar)
  • Received : 2007.03.13
  • Accepted : 2007.06.11
  • Published : 2007.12.01

Abstract

The aim of this series of experiments was to examine the opportunity for application of X-ray computer tomography (CT) in cattle production. Firstly, tissue composition of M. longissimus dorsi (LD) cuts between the $11-13^{th}$ ribs (in Exp 1. between the $9-11^{th}$ ribs), was determined by CT and correlated with tissue composition of intact half carcasses prior to dissection and tissue separation. Altogether, 207 animals of different breeds and genders were used in the study. In Exp. 2 and 3, samples were taken from LD cuts, dissected and chemical composition of muscle homogenates was analysed by conventional procedures. Correlation coefficients were calculated among slaughter records, tissues in whole carcasses and tissue composition of rib samples. Results indicated that tissue composition of rib samples determined by CT closely correlated with tissue composition results by dissection of whole carcasses. The findings revealed that figures obtained by CT correlate well with the dissection results of entire carcasses (meat, bone, fat). Close three-way coefficients of correlation (r = 0.80-0.97) were calculated among rib eye area, volume of cut, pixel-sum of adipose tissue determined by CT and intramuscular fat or adipose tissue in entire carcasses. Estimation of tissue composition of carcasses using equations including only CT-data as independent variables proved to be less reliable in prediction of lean meat and bone in carcass ($R^2 = 0.51-0.86$) than for fat (($R^2 = 0.83-0.89$). However, when cold half carcass weight was also included in the equation, the coefficient of determination exceeded $R^2 = 0.90$. In Exp. 3 tissue composition of rib samples by CT were compared to the results of EUROP carcass classification. Findings revealed that CT analysis has higher predictive value in estimation of actual tissue composition of cattle carcasses than EUROP carcass classification.

Keywords

References

  1. Alhassan, W. S., H. J. G. Buchanan-Smith, W. R. Usborne, G. C. Ashton and G. C. Smith. 1975. Predicting empty body composition of cattle from carcass weight and rib cut composition. Can. J. Anim. Sci. 55:369-376. https://doi.org/10.4141/cjas75-045
  2. Berg, E. P., A. Asfaw and M. R. Ellersieck. 2002. Predicting pork carcass and primal lean content from electromagnetic scans. Meat Sci. 60:133-139. https://doi.org/10.1016/S0309-1740(01)00114-0
  3. Bozo, S., T. Klosz, J. Sárdi, K. Rada and L. Timár. 1995. Estimation of carcass composition using commarcial retail cuts in slaughter cattle. Published by Research Institute for Animal Breeding and Nutrition, Herceghalom. 111.
  4. Bozo, S., J. Sardi, I. Barany, K. Bolcskey and I. Gyorkos. 1999. Body composition and EUROP evaluation in cattle carcass. Hungarian J. Anim. Prod. 48:637-638.
  5. Brown, Jr. A. H., P. K. Camfield, R. T. Baublits, F. W. Pohlman, Z. B. Johnson, C. J. Brown, G. T. Tabler, Jr. and B. A. Sandelin.. 2006. Effects of size and rate of maturing on carcass composition of pasture- or feedlot- developed steers. Asian-Aust. J. Anim. Sci. 19(5):661-671. https://doi.org/10.5713/ajas.2006.661
  6. De Campeneere, S., L. O. Fiemsa, G. Van de Voorde, J. M. Vanacker, Ch. V. Boucque and D. I. Demeyer. 1999. Estimation of chemical carcass composition from 8th rib characteristics with Belgian blue double-muscled bulls. Meat Sci. 51:27-33. https://doi.org/10.1016/S0309-1740(98)00093-X
  7. Hankins, O. G. and P. E. Howe. 1946. Estimation of the composition of beef carcasses and cuts. [T.B.]: United Sates Department of Agriculture, 1-19 (Technical Bulletin-USDA, 926).
  8. Hollo, G., J. Csapó, E. Szucs, J. Tozser, I. Repa and I. Hollo. 2001. Influence of Breed, Slaughter Weight and Gender on Chemical Composition of Beef. Part 2. Fatty Acid Composition of Fat in Rib Samples. Asian-Aust J. Anim. Sci. 14:1719-1723. https://doi.org/10.5713/ajas.2001.1719
  9. Johansen, J., A. H. Aastveit, E. Bjorg, K. Kvaal and M. Roe. 2006. Validation of the EUROP system for lamb classification in Norway; repeatability and accuracy of visual assessment and prediction of lamb carcass composition. Meat Sci. 74:497-509. https://doi.org/10.1016/j.meatsci.2006.04.017
  10. Jones, H. E., R. M. Lewis, M. J. Young and B. T. Wolf. 2002. The use of X-ray computer tomography for measuring the muscularity of live sheep. J. Anim. Sci. 75:387-399. https://doi.org/10.1017/S1357729800053169
  11. Kong, H. S., J. D. Oh, S. G. Lee, Y. S. Hong, W. I. Song, S. J. Lee, H. C. Kim, B. H. Yoo, H. K. Lee and G. J. Jeon. 2006. Association of polymorphisms in the bovine leptin gene with ultrasound measurements for improving in Korean cattle Asian-Aust. J. Anim. Sci. 19:1691-1695 https://doi.org/10.5713/ajas.2006.1691
  12. Küchenmeister, U., H. Ladeagast und K. Ender. 1990. Schlachtkorperbewertung und Klassifizierung bei Schwein und Rind. Fortschrittsbereichte fur die Landwirtschaft und Nachrungsguterwirtschaft. 28. 2. Akad. Landw. Der DDR. Berlin.
  13. Lebert, A. 2000. Grading systems, Yield and meat quality, evaulation on line. In: Proceedings of the 46th Intern. Congr. Meat Sci. Techn. pp. 332-337.
  14. Lee, D. H. and H. C. Kim. 2004. Genetic Relationship between Ultrasonic and Carcass Measurements for Meat Qualities in Korean steers. Asian-Aust. J. Anim. Sci. 17:7-12. https://doi.org/10.5713/ajas.2004.7
  15. Lee, D. H., V. Choudhary and G. H. Lee. 2006. Genetic parameter estimates for ultrasonic meat qualities in Hanwoo cows. Asian-Aust. J. Anim. Sci. 19:468-474. https://doi.org/10.5713/ajas.2006.468
  16. Marcoux, M., L. Faucitano and C. Pomar. 2005. The accuracy of predicting carcass composition of three different pig genetic lines by dual-energy X-ray absorptiometry. Meat Sci. 70:655-663. https://doi.org/10.1016/j.meatsci.2005.02.015
  17. Mercier, J., C. Pomar, M. Marcoux, F. Goulet, M. Theriault and F. W. Castonguay. 2006. The use of dual-energy X-ray absorptiometry to estimate the dissected composition of lamb carcasses. Meat Sci. 73:249-257. https://doi.org/10.1016/j.meatsci.2005.11.024
  18. Mitchell, A. D., M. B. Solomon and T. S. Rumsey. 1997. Composition analysis of beef rib sections by dual-energy Xray absorptiometry. Meat Sci. 47:115-124. https://doi.org/10.1016/S0309-1740(97)00045-4
  19. Mitsuhashi, T., M. Mitsumoto, Y. Yamashita and S. Ozawa. 1990. The measurement of fat thickness in live cattle with an ultrasonic device as a predictor of carcass composition Asian-Aust. J. Anim. Sci. 3:263-268. https://doi.org/10.5713/ajas.1990.263
  20. Monziols, M., G. Collewet, M. Bonneau, F. Mariette, A. Davenel and M. Kouba. 2006. Quantification of muscle, subcutaneous fat and intermuscular fat in pig carcasses and cuts by magnetic resonance imaging. Meat Sci. 72:146-154. https://doi.org/10.1016/j.meatsci.2005.06.018
  21. Nour, A. Y. M. and M. L. Thonney. 1994. Technical note: chemical composition of Angus and Holstein carcasses predicted from rib section composition. J. Anim. Sci. 72:1239-1241. https://doi.org/10.2527/1994.7251239x
  22. Paulino, P. V. R., S. C. V. Filho, M. A. L. Costa, M. F. Paulino, K. A. Magalha-es, E. Detmann, R. F. D. Valadares, M. O. Porto and K. Andreatta. 2005. Validation of the 9-11th rib cut to estimate the chemical composition of the dressed carcass and of the whole empty body of Zebu cattle. Liv. Prod. Sci. 93:245-253. https://doi.org/10.1016/j.livprodsci.2004.10.005
  23. Repa, I., R. Romvari, G. Bajzik, P. Bogner, Zs. Petrasi, M. Zomborszky Kovács and P. Horn. 2002. 3D diagnostic imaging methods in to improve food quality. Hungarian Sci. 9:1147-1160.
  24. Robinson, D. L., C. A. McDonald, K. Hammond and J. W. Turner. 1992. Live animal measurement of carcass traits by ultrasound: assessment and accuracy of sonographers. J. Anim. Sci. 70:1667-1676. https://doi.org/10.2527/1992.7061667x
  25. Sardi, J., I. Bárány, S. Bozó, K. Bölcskey, I. Gyorkos and K. Kovács. 2002. Alternatives for the objective qualification of beef cattle. 2nd Paper: EUROP qualification of beef cattle and composition of carcass. Hungarian J. Anim. Prod. 51:135-144.
  26. Sehested, E. 1984. Computerised tomography in sheep. In In vivo measurement of body composition in meat animals (Ed. D. Lister), pp. 67-74. Elsevier, London.
  27. Sekine, J., K. Fujita and Y. Asahida. 1992. A prediction of body water compartments of growing cattle in vivo. Asian-Aust. J. Anim. Sci. 5:7-12. https://doi.org/10.5713/ajas.1992.7
  28. Szucs, E. 2002. Carcass value and meat quality. Szaktudas Kiado, Budapest.
  29. Takagi, M., N. Yamagishi, I. H. Lee, K. Oboshi, M. Tsuno and M. P. B. Wijayagunawardane. 2005. Reproductive management with ultrasound scanner-monitoring system for a high-yielding commercial dairy herd reared under stanchion management style. Asian-Aust. J. Anim. Sci. 18(7):949-956. https://doi.org/10.5713/ajas.2005.949
  30. Young, M. J., R. M. Lewis, K. A. McLean, N. A. A. Robson, J. Fraser, J. Fitzsimons, J. Donbavand and G. Simm. 1999. Prediction of carcass composition in meat breeds of sheep using computer tomography. Proc. Br. Soc. Anim. Sci. p. 43.
  31. Zembayashi, M. 1999. Effectiveness of morphometric measurements for improvement of the prediction accuracy of beef carcass composition. Meat Sci. 51:339-347. https://doi.org/10.1016/S0309-1740(98)00131-4

Cited by

  1. Intramuscular connective tissue properties in longissimus thoracis muscle of Simmental Cattle vol.8, pp.s1, 2017, https://doi.org/10.1017/S2040470017001698
  2. Evaluation of marbling traits by X-ray computed tomography in Hungarian Simmental bulls vol.8, pp.s1, 2017, https://doi.org/10.1017/S2040470017001704
  3. Assessment of intramuscular fat level and distribution in beef muscles using X-ray microcomputed tomography vol.85, pp.2, 2007, https://doi.org/10.1016/j.meatsci.2010.01.008
  4. X‐ray computed tomography for quality inspection of agricultural products: A review vol.7, pp.10, 2007, https://doi.org/10.1002/fsn3.1179