DOI QR코드

DOI QR Code

Identification of Single Nucleotide Polymorphism of H-FABP Gene and Its Association with Fatness Traits in Chickens

  • Wang, Yan (College of Animal Science and Technology, Sichuan Agricultural University) ;
  • Shu, Dingming (Institute of Animal Science, Guangdong Academy of Agricultural Sciences) ;
  • Li, Liang (College of Animal Science and Technology, Sichuan Agricultural University) ;
  • Qu, Hao (Institute of Animal Science, Guangdong Academy of Agricultural Sciences) ;
  • Yang, Chunfen (Institute of Animal Science, Guangdong Academy of Agricultural Sciences) ;
  • Zhu, Qing (College of Animal Science and Technology, Sichuan Agricultural University)
  • Received : 2007.04.17
  • Accepted : 2007.07.22
  • Published : 2007.12.01

Abstract

Heart fatty acid-binding protein gene (H-FABP) is an important candidate gene for meat quality. One of the objectives of this study was to screen single nucleotide polymorphisms (SNP) of chicken H-FABP gene among 252 individuals that included 4 Chinese domestic chicken breeds (Fengkai Xinghua (T04), Huiyang Huxu (H), Qingyuan Ma (Q), Guangxi Xiayan (S1)), 2 breeds developed by the Institute of Animal Science, Guangdong Academy of Agricultural Sciences (Lingnan Huang (DC), dwarf chicken (E4)) and one introduced broiler (Abor Acre (AA)). Another objective of this study was to analyze the associations between polymorphisms of the H-FABP gene and fat deposition traits in chickens. PCR-SSCP was used to analyze SNPs in H-FABP and 4 SNPs (T260C, G675A, C783T and G2778A) were detected. Associations between polymorphic loci and intramuscular fat (IMF), abdominal fat weight (AFW) and abdominal fat percentage (AFP) were analyzed by ANCOVA method. The results showed that the T260C genotypes were significantly associated with IMF (p = 0.0233) and AFP (p = 0.0001); the G675A genotypes were significantly associated with AFW, AFP (p<0.01) and IMF (p<0.05); at the C783T locus, AFW and AFP differed highly between genotypes. However, the G2778A loci did not show any significant effect on fat deposition traits in this study. In addition, we found that there were some differences between AFP and definite haplotypes through a nonparametric statistical method, so the haplotypes based on the SNPs except G2778A loci were also significantly associated with IMF, AFW (g) (p<0.05) and AFP (%) (p<0.001). Significantly and suggestively dominant effects of H4H4 haplotype were observed for IMF and the H2H3 was dominant for AFW (g) and AFP (%). The results also revealed that H5H7 haplotype had a negative effect on IMF, while the H5H6 had a positive effect on AFW (g) and AFP (%).

Keywords

References

  1. Banaszak, L., N. Winter, Z. H. Xu, D. A. Bernlohr, S. Cowan and T. A. Jones. 1994. Lipid-binding proteins: A family of fatty acid and retinoid transport proteins. J. Adv. Prot. Chem. 45: 89-151. https://doi.org/10.1016/S0065-3233(08)60639-7
  2. Binas, B., H. Danneberg, J. McWhir, L. Mullins and A. J. Clark. 1999. Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization. J. FASEB. 13:805-812. https://doi.org/10.1096/fasebj.13.8.805
  3. Brandstetter, A. M., H. Sauerwein, J. H. Veerkamp, Y. Gaey and J. F. Hocquette. 2002. Effects of muscle type, castration, age and growth rate on H-FABP expression in bovine skeletal muscle. J. Livest. Prod. Sci. 75:199-208. https://doi.org/10.1016/S0301-6226(01)00318-9
  4. Choi, C. H., B. W. Cho, G. J. Jeon and H. K. Lee. 2006. Identification of novel SHPs with effect on economic traits in uncoupling protein gene of Korean native chicken. Asian-Aust. J. Anim. Sci. 19(8):1065-1070. https://doi.org/10.5713/ajas.2006.1065
  5. Chmurzynska, A. 2006. The multigene family of fatty acid-binding proteins (FABPs): functions, structure and polymorphism. J. Appl. Genet. 47(1):39-48. https://doi.org/10.1007/BF03194597
  6. Chang, W., J. Rickers-Haunerland and N. H. Haunerland. 2001. Induction of cardiac FABP gene expression by long chain fatty acids in cultured rat muscle cells. J. Mol. Cell. Biochem. 221: 127-132. https://doi.org/10.1023/A:1010990129038
  7. Carey, J. O., P. D. Neufer, R. P. Farrar, J. H. Veerkamp and G. L. Dohm. 1994. Transcriptional regulation of muscle fatty-acid binding protein. J. Biochem. 298:613-617. https://doi.org/10.1042/bj2980613
  8. Clavel, S., L. Farout, M. Briand, Y. Briand and P. Jouanel. 2002. Effect of endurance training and/or fish oil supplemented diet on cytoplasmic fatty acid binding protein in rat skeletal muscles and heart. Eur. J. Appl. Physiol. 87:193-201. https://doi.org/10.1007/s00421-002-0612-6
  9. Daly, M. J., J. D. Rioux and S. F. Schaffner. 2001. High-resolution haplotype structure in the human genome. J. Nat. Genet. 29:229-232. https://doi.org/10.1038/ng1001-229
  10. Glatz, J. F. and J. H. Veerkamp. 1985. Intracellular fatty-acid binding proteins. Int. J. Biochem. 17:13-22. https://doi.org/10.1016/0020-711X(85)90080-1
  11. Glatz, J. F. C. and G. Van der Vusse. 1996. Cellular fatty acidbinding proteins: their function and physiological significance. J. Prog. Lipid. Res. 3535(3):243-282
  12. Gerbens, F., G. Rettenberqer, J. A. Lenstra, J. H. Veerkamp and M. F. te Pas. 1997. Characterization, chromosomal localization, and genetic variation of the porcine heart fatty acid-binding protein gene. J. Mamm. Genome. 8(5):328-332. https://doi.org/10.1007/s003359900433
  13. Gerbens, F., A. J. van Erp, F. L. Harders, F. J. Verburg, T. H. Meuwissen, J. H. Veerkamp and M. F. te Pas. 1999. Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs. J. Anim. Sci. 77(4):846-852. https://doi.org/10.2527/1999.774846x
  14. Gerbens, F., D. J. de Koning, F. L. Harders, T. H. Meuwissen, L. L. Janss, M. A. Groenen, J. H. Veerkamp, J. A. Van Arendonk and M. F. Te Pas. 2000. The effect of adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs. J. Anim. Sci. 78:552-559. https://doi.org/10.2527/2000.783552x
  15. Hunt, C. R., J. H. Ro, D. E. Dobson, H. Y. Min and B. M. Spiegelman. 1986. Adipocyte P2 gene: Developmental expression and homology of 5′-flanking sequences among fat cell specific genes. J. Proc. Natl. Acad. Sci. 83:3786-3790. https://doi.org/10.1073/pnas.83.11.3786
  16. Hayasaka, K., M. Himoro, G. Takada, E. Takahashi, S. Minoshima and N. Shimizu. 1993. Structure and localization of the gene encoding human peripheral myelin protein 2 (PMP2). J. Genomics. 18(2):244-248. https://doi.org/10.1006/geno.1993.1462
  17. Hertzel, A. V. and D. A. Bernlohr. 2000. The mammalian fatty acid-binding protein multigene family: molecular and genetic insights into function. J. Trends. Endocrinol. Metab. 11(5): 175-180. https://doi.org/10.1016/S1043-2760(00)00257-5
  18. Haunerland, N. H. 1994. Fatty acid binding protein in locust and mammalian muscle. Comparison of structure, function and regulation. J. Comp. Biochem. Phys. B Biochem. Mol. Biol. 109:199-208. https://doi.org/10.1016/0305-0491(94)90003-5
  19. Huang, Q. Q., Y. X. Fu and E. Boerwinkle. 2003. Comparison of strategies for selecting single nucleotide polymorphisms for case/control association studies. J. Hum. Genet. 113:253-257. https://doi.org/10.1007/s00439-003-0965-x
  20. Ovilo, C., A. Oliver, J. L. Noguera, A. Clop, C. Barragan, L. Varona, C. Rodriguez, M. Toro, A. Sanchez, M. Perez-Enciso and L. Silio. 2002. Test for positional candidate genes for body composition on pig chromosome 6. J. Genet. Sel. Evol. 34(4): 465-479. https://doi.org/10.1186/1297-9686-34-4-465
  21. Stephens, M., N. Smith and P. Donnelly. 2001. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68:978-989. https://doi.org/10.1086/319501
  22. Stephens, J. C., J. A. Schneider, D. A. Tanguay, J. Choi, T. Acharya, S. E. Stanley, R. Jiang, C. J. Messer, A. Chew, J. H. Han, J. Duan, J. L. Carr, M. S. Lee, B. Koshy, A. M. Kumar, G. Zhang, W. R. Newell, A. Windemuth, C. Xu, T. S. Kalbfleisch, S. L. Shaner, K. Arnold, V. Schulz, C. M. Drysdale, K. Nandabalan, R. S. Judson, G. Ruano and G. F. Vovis. 2001a. Haplotype variations and linkage disequilibrium in 313 human genes. J. Sci. 293:489-493. https://doi.org/10.1126/science.1059431
  23. Treuner, M., C. A. Kozak, D. Gallahan, R. Grosse and T. Muller. 1994. Cloning and characterization of the mouse gene encoding mammary-derived growth inhibitor/heart-fatty acidbinding protein. J. Gene. 147(2):237-242. https://doi.org/10.1016/0378-1119(94)90073-6
  24. Li, C. Y. and H. Li. 2006. Associaion of MC4R gene polymorphisms with growth and body composition traits in chicken. Asian-Aust. J. Anim. Sci. 19(6):763-768. https://doi.org/10.5713/ajas.2006.763
  25. Li, W. F., S. Z. Xu, H. H. Chao and H. B. Li. 2004. Genetic Variation in Intron1 of H-FABP Gene in Three Bovine Hybrids and the Relationships with Meat Quality Trait. J. Acta. Veterinaria et Zootechnica. Sinica. 35(3):252-255.
  26. Li, W. J., H. B. Li, J. Wen, J. L. Chen, G. P. Zhao and M. Q. Zheng. 2006. Association of the H-FABP and A-HABP gene expression with intramuscular fat content in chicken. J. Acta. Veterinaria et Zootechnica. Sinica. 37(5):417-423.
  27. Meng, H., J. G. Zhao, Z. H. Li and H. Li. 2005. Single nucleotide polymorphisms on peroxisome proliferators-activated receptor genes associated with fatness traits in chicken. Asian-Aust. J. Anim. Sci. 18(9):1221-1225. https://doi.org/10.5713/ajas.2005.1221
  28. McArthur, M. J., B. P. Atshaves, A. Frolov, W. D. Foxworth, A. B. Kier and F.Schroeder. 1999. Cellular uptake and intracellular trafficking of long chain fatty acids. J. Lipid. Res. 40:1371-1383.
  29. Norbert, H., Haunerlanda and Friedrich Spener. 2004. Properties and physiological significance of fatty acid binding proteins. J. Adv. Mol. Cell. Biol. 33:99-123.
  30. Wang, Y., H. Li, Y. D. Zhang, Z. L. Gu, Z. H. Li and Q. G. Wang. 2006. Analysis on association of a SNP in the chicken OBR gene with growth and body composition traits. Asian-Aust. J. Anim. Sci. 19(12):1706-1710. https://doi.org/10.5713/ajas.2006.1706
  31. Ye, M. H., H. H. Cao, J. Wen, H. B. Li, J. L. Chen and G. P. Zhao. 2003. RFLPs at Heart and Adipocyte Fatty Acid Binding Protein Genes in Beijing Oil Chick and Aijiao Chick. J. Acta. Veterinaria. et Zootechnica. Sinica. 34(5):422-426.
  32. You, X. Y., Y. P. Liu, Q. Zhu and Z. Q. Yang. 2007. Study on SNP of the H-FABP gene and its association with slaughter performance in chicken. J. Hereditas (Beijing). 29(2):230-234. https://doi.org/10.1360/yc-007-0230
  33. Zimmerman, A. W. and J. H. Veerkamp. 2002. New insights into the structure and function of fatty acid-binding proteins. J. Cell. Mol. Life Sci. 59:1096-1116. https://doi.org/10.1007/s00018-002-8490-y
  34. Zanotti, G. 1999. Muscle fatty acid-binding protein. J. Biochim. Biophys. Acta. 1441:94-105. https://doi.org/10.1016/S1388-1981(99)00163-8
  35. Zhang, W. H., A. Collins and N. E. Morton. 2004. Does haplotype diversity predict power for association mapping of disease susceptibility. J. Hum. Genet. 115:157-164.

Cited by

  1. Relationships Between Single Nucleotide Polymorphisms of the H-FABP Gene and Slaughter and Meat Quality Traits in Chicken vol.47, pp.7-8, 2009, https://doi.org/10.1007/s10528-009-9249-z
  2. Exploring evidence of positive selection reveals genetic basis of meat quality traits in Berkshire pigs through whole genome sequencing vol.16, pp.1, 2015, https://doi.org/10.1186/s12863-015-0265-1
  3. Correlation between Heart-type Fatty Acid-binding Protein Gene Polymorphism and mRNA Expression with Intramuscular Fat in Baicheng-oil Chicken vol.28, pp.10, 2015, https://doi.org/10.5713/ajas.14.0886
  4. Polymorphisms in the Perilipin Gene May Affect Carcass Traits of Chinese Meat-type Chickens vol.28, pp.6, 2015, https://doi.org/10.5713/ajas.14.0554
  5. Association of H-FABP gene polymorphisms with intramuscular fat content in Three-yellow chickens and Hetian-black chickens vol.7, pp.1, 2016, https://doi.org/10.1186/s40104-016-0067-y
  6. Correlation of the A-FABP Gene Polymorphism and mRNA Expression with Intramuscular Fat Content in Three-Yellow Chicken and Hetian-Black Chicken vol.28, pp.1, 2017, https://doi.org/10.1080/10495398.2016.1194288
  7. Estimation of Interaction Effects among Nucleotide Sequence Variants in Animal Genomes vol.22, pp.1, 2007, https://doi.org/10.5713/ajas.2009.80314
  8. Gene Expression of Heart and Adipocyte Fatty Acid-binding Protein in Chickens by FQ-RT-PCR vol.23, pp.8, 2010, https://doi.org/10.5713/ajas.2010.90556
  9. Effects of dietary energy level on the transcription of the H-FABP gene in different tissues of sheep vol.115, pp.1, 2007, https://doi.org/10.1016/j.smallrumres.2013.09.007
  10. Association of A‐FABP gene polymorphism and mRNA expression with intramuscular fat content (IMF) in Baicheng‐You chicken vol.103, pp.5, 2007, https://doi.org/10.1111/jpn.13150
  11. Gene expression of fatty acid binding protein genes and its relationship with fat deposition of Thai native crossbreed chickens vol.34, pp.4, 2007, https://doi.org/10.5713/ajas.20.0020