Functional Analysis of the First Mannosyltransferase (PIG-M) involved in Glycosylphosphatidylinositol Synthesis in Plasmodium falciparum

  • Kim, Youn Uck (Department of Biological Sciences, Sun Moon University) ;
  • Hong, Yeongjin (Genomic Research Center for Enteropathogenic Bacteria and Department of Microbiology, Chonnam National University Medical School)
  • 투고 : 2007.01.04
  • 심사 : 2007.05.31
  • 발행 : 2007.10.31

초록

The mammalian glycosylphosphatidylinositol (GPI) anchor consists of three mannoses attached to acylated GlcN-(acyl)PI to form $Man_3$-GlcN-(acyl)PI. The first of the three mannose groups is attached to an intermediate to generate Man-GlcN-(acyl)PI by the first mannosyltransferase (GPI-MT-I). Mammalian and protozoan GPI-MT-I have different substrate specificities. PIG-M encodes the mammalial GPI-MT-I which has 423 amino acids and multiple transmembrane domains. In this work we cloned PIG-M homologues from humans, Plasmodium falciparum (PfPIG-M), and Saccharomyces cerevisiae (GPI14), to test whether they could complement GPI-MT-I-deficient mammalian cells, since this biosynthetic step is likely to be a good target for selective screening of inhibitors against many pathogenic organisms. PfPIG-M partially restored cell surface expression of the GPI-anchored protein CD59 in PIG-M deficient mammalian cells, and first mannose transfer activity in vitro; however, this was not the case for GPI14.

키워드

과제정보

연구 과제 주관 기관 : Korea Science and Engineering Foundation (KOSEF), Ministry of Commerce, Industry, and Energy (MOCIE)

참고문헌

  1. Davitz, M. A., Hom, J., and Schenkman, S. (1989) Purification of a glycosyl-phosphatidylinositol-specific phospholipase D from human plasma. J. Biol. Chem. 264, 13760−13764
  2. Delorenzi, M., Sexton, A., Shams-Eldin, H., Schwarz, R. T., Speed, T., et al. (2002) Genes for glycosylphosphatidylinositol toxin biosynthesis in Plasmodium falciparum. Infect. Immun. 70, 4510−4522
  3. Doerrler, W. T., Ye, J., Falck, J. R., and Lehrman, M. A. (1996) Acylation of glucosaminyl phosphatidylinositol revisited. Palmitoyl-CoA dependent palmitoylation of the inositol residue of a synthetic dioctanoyl glucosaminyl phosphatidylinositol by hamster membranes permits efficient mannosylation of the glucosamine residue. J. Biol. Chem. 271, 27031− 27038
  4. Gastinel, L. N., Cambillau, C., and Bourne, Y. (1999) Crystal structures of the bovine beta 4galactosyltransferase catalytic domain and its complex with uridine diphosphogalactose. EMBO J. 18, 3546−3557
  5. Gerold, P., Vivas, L., Ogun, S. A., Azzouz, N., Brown, K. N., et al. (1997) Glycosylphosphatidylinositols of Plasmodium chabaudi chabaudi: a basis for the study of malarial glycolipid toxins in a rodent model. Biochem. J. 328, 905−911
  6. Herscovics, A. and Orlean, P. (1993) Glycoprotein biosynthesis in yeast. FASEB J. 7, 540−550
  7. Inoue, N., Kinoshita, T., Orii, T., and Takeda, J. (1993) Cloning of a human gene, PIG-F, a component of glycosylphosphatidylinositol anchor biosynthesis, by a novel expression cloning strategy. J. Biol. Chem. 268, 6882−6885
  8. Inoue, N., Watanabe, R., Takeda, J., and Kinoshita, T. (1996) PIG-C, one of the three human genes involved in the first step of glycosylphosphatidylinositol biosynthesis is a homologue of Saccharomyces cerevisiae GPI2. Biochem. Biophys. Res. Commun. 226, 193−199
  9. Kamitani, T., Chang, H. M., Rollins, C., Waneck, G. L., and Yeh, E. T. (1993) Correction of the class H defect in glycosylphosphatidylinositol anchor biosynthesis in Ltk- cells by a human cDNA clone. J. Biol. Chem. 268, 20733−20736
  10. Kang, J. Y., Hong, Y., Ashida, H., Shishioh, N., Murakami, Y., et al. (2005) PIG-V involved in transferring the second mannose in glycosylphosphatidylinositol. J. Biol. Chem. 280, 9489−9497
  11. Kawagoe, K., Kitamura, D., Okabe, M., Taniuchi, I., Ikawa, M., et al. (1996) Glycosylphosphatidylinositol-anchor-deficient mice: implications for clonal dominance of mutant cells in paroxysmal nocturnal hemoglobinuria. Blood 87, 3600−3606
  12. Kinoshita, T., Ohishi, K., and Takeda, J. (1997) GPI-anchor synthesis in mammalian cells: genes, their products, and a deficiency. J. Biochem. (Tokyo) 122, 251−257
  13. Kinoshita, T. and Inoue, N. (2000) Dissecting and manipulating the pathway for glycosylphosphatidylinositol-anchor biosynthesis. Curr. Opin. Chem. Biol. 4, 632−638
  14. Kyte, J. and Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105−132
  15. Lee, J. Y., Kim, J. Y., Lee, Y. G., Shin, W. C., Chun, T., et al. (2007) Hydroquinone, a reactive metabolite of benzene, reduces macrophage-mediated immune responses. Mol. Cells. 23, 198−206
  16. Maeda, Y., Tomita, S., Watanabe, R., Ohishi, K., and Kinoshita, T. (1998) DPM2 regulates biosynthesis of dolichol phosphate- mannose in mammalian cells: correct subcellular localization and stabilization of DPM1 and binding of dolichol phosphate. EMBO J. 17, 4920−4929
  17. Maeda, Y., Tanaka, S., Hino, J., Kangawa, K., and Kinoshita, T. (2000) Human dolichol-phosphate-mannose synthase consists of three subunits, DPM1, DPM2 and DPM3. EMBO J. 19, 2475−2482
  18. Maeda, Y., Watanabe, R., Harris, C. L., Hong, Y., Ohishi. K, et al. (2001) PIG-M transfers the first mannose to glycosylphosphatidylinositol on the lumenal side of the ER. EMBO J. 20, 250−261
  19. Miyata, T., Takeda, J., Iida, Y., Yamada, N., Inoue, N., et al. (1993) The cloning of PIG-A, a component in the early step of GPI-anchor biosynthesis. Science 259, 1318−1320
  20. Nagamune, K., Nozaki, T., Maeda, Y., Ohishi, K., Fukuma, T., et al. (2000) Critical roles of glycosylphosphatidylinositol for Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 97, 10336− 10341
  21. Puoti, A. and Conzelmann, A. (1993) Characterization of abnormal free glycophosphatidylinositols accumulating in mutant lymphoma cells of classes B, E, F, and H. J. Biol. Chem. 268, 7215−7224
  22. Ralton, J. E., Milne, K. G., Guther, M. L., Field, R. A., and Ferguson, M. A. (1993) The mechanism of inhibition of glycosylphosphatidylinositol anchor biosynthesis in Trypanosoma brucei by mannosamine. J. Biol. Chem. 268, 24183−24189
  23. Schofield, L., Vivas, L., Hackett, F., Gerold, P., Schwarz, R. T., et al. (1993) Neutralizing monoclonal antibodies to glycosylphosphatidylinositol, the dominant TNF-alpha-inducing toxin of Plasmodium falciparum: prospects for the immunotherapy of severe malaria. Ann. Trop. Med. Parasitol. 87, 617−626
  24. Sharma, D. K., Vidugiriene, J., Bangs, J. D., and Menon, A. K. (1999) A cell-free assay for glycosylphosphatidylinositol anchoring in African trypanosomes. Demonstration of a transamidation reaction mechanism. J. Biol. Chem. 274, 16479−16486
  25. Svetlnan, G. D., Dejiang, F., Jussi, J., and Sirkka, K. (2005) Characterization of GPI14/YJRO13w mutation that induces the cell wall integrity signaling pathway and results in increase protein production in Saccharomyces cerevisiae. Yeast 22, 993−1009
  26. Takahashi, M., Inoue, N., Ohishi, K., Maeda, Y., Nakamura, N., et al. (1996) PIG-B, a membrane protein of the endoplasmic reticulum with a large lumenal domain, is involved in transferring the third mannose of the GPI anchor. EMBO J. 15, 4254−4261
  27. Takeda, J., Miyata, T., Kawagoe, K., Iida, Y., Endo, Y., et al. (1993) Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 73, 703−711
  28. Udenfriend, S. and Kodukula, K. (1995) How glycosylphosphatidyl inositol-anchored membrane proteins are made. Annu. Rev. Biochem. 64, 563−591
  29. Vijaykumar, M., Naik, R. S., and Gowda, D. C. (2001) Plasmodium falciparum glycosylphosphatidylinositol-induced TNFalpha secretion by macrophages is mediated without membrane insertion or endocytosis. J. Biol. Chem. 276, 6909− 6912
  30. Wiggins, C. A. and Munro, S. (1998) Activity of the yeast MNN1 alpha-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. Proc. Natl. Acad. Sci. USA 95, 7945−7950