Quantitative Trait Loci Associated with Functional Stay-Green SNU-SG1 in Rice

  • Yoo, Soo-Cheul (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Cho, Sung-Hwan (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Zhang, Haitao (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Paik, Hyo-Chung (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Chung-Hee (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Li, Jinjie (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Yoo, Jeong-Hoon (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Byun-Woo (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Koh, Hee-Jong (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Seo, Hak Soo (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Paek, Nam-Chon (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University)
  • Received : 2007.02.04
  • Accepted : 2007.04.09
  • Published : 2007.08.31

Abstract

During monocarpic senescence in higher plants, functional stay-green delays leaf yellowing, maintaining photosynthetic competence, whereas nonfunctional stay-green retains leaf greenness without sustaining photosynthetic activity. Thus, functional stay-green is considered a beneficial trait that can increase grain yield in cereal crops. A stay-green japonica rice 'SNU-SG1' had a good seed-setting rate and grain yield, indicating the presence of a functional stay-green genotype. SNU-SG1 was crossed with two regular cultivars to determine the inheritance mode and identify major QTLs conferring stay-green in SNU-SG1. For QTL analysis, linkage maps with 100 and 116 DNA marker loci were constructed using selective genotyping with $F_2$ and RIL (recombinant inbred line) populations, respectively. Molecular marker-based QTL analyses with both populations revealed that the functional stay-green phenotype of SNU-SG1 is regulated by several major QTLs accounting for a large portion of the genetic variation. Three main-effect QTLs located on chromosomes 7 and 9 were detected in both populations and a number of epistatic-effect QTLs were also found. The amount of variation explained by several digenic interactions was larger than that explained by main-effect QTLs. Two main-effect QTLs on chromosome 9 can be considered the target loci that most influence the functional stay-green in SNU-SG1. The functional stay-green QTLs may help develop low-input high-yielding rice cultivars by QTL-marker-assisted breeding with SNU-SG1.

Keywords

Acknowledgement

Supported by : Rural Development Administration (RDA) of the Republic of Korea

References

  1. Abdelkhalik, A. F., Shishido, R., Nomura, K., and Ikehashi, H. (2005) QTL-based analysis of leaf senescence in an indica/japonica hybrid in rice (Oryza sativa L.). Theor. Appl. Genet. 110, 1226-1235 https://doi.org/10.1007/s00122-005-1955-2
  2. Armstead, I., Donnison, I., Aubry, S., Harper, J., Hortensteiner, S., et al. (2007) Cross-species identification of Mendel's I locus. Science 315, 73
  3. Bolanos, J. and Edmeades, G. O. (1996) The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crop Res. 48, 65-80 https://doi.org/10.1016/0378-4290(96)00036-6
  4. Borrell, A. K., Hammer, G. L., and Henzell, R. G. (2000) Does maintaining the green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop Sci. 40, 1037-1048 https://doi.org/10.2135/cropsci2000.4041037x
  5. Cha, K. W., Lee, Y. J., Koh, H. J., Lee, B. M., Nam, Y. W., et al. (2002) Isolation, characterization, and mapping of the stay green mutant in rice. Theor. Appl. Genet. 104, 526-532 https://doi.org/10.1007/s001220100750
  6. Darvasi, A. (1997) The effect of selective genotyping on QTL mapping accuracy. Mamm. Genome. 8, 67-68 https://doi.org/10.1007/s003359900353
  7. Darvasi, A. and Soller, M. (1992) Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus. Theor. Appl. Genet. 85, 353-359
  8. Fang, Z., Bouwkamp, J. C., and Solomos, T. (1998) Chlorophyllase activities and chlorophyll degradation during leaf senescence in the non-yellowing mutant and the wild-type of Phaseolus vulgaris L. J. Exp. Bot. 49, 503-510 https://doi.org/10.1093/jexbot/49.320.503
  9. Fukushima, E., Arata, Y., Endo, T., Sonnewald, U., and Sato, F. (2001) Improved salt tolerance of transgenic tobacco expressing apoplastic yeast-derived invertase. Plant Cell Phsiol. 42, 245-249 https://doi.org/10.1093/pcp/pce027
  10. Gao, Y. M., Zhu, J., Song, Y. S., He, C. X., Shi, C. H., et al. (2004) Analysis of digenic epistatic effects and QE interaction effects QTL controlling grain weight in rice. J. Zhejiang Univ. 5, 371-377 https://doi.org/10.1631/jzus.2004.0371
  11. Gentinetta, E., Ceppi, D., Lepori, C., Perico, G., Motto, M., et al. (1986) A major gene for delayed senescence in maize. Pattern of photosynthates accumulation and inheritance. Plant Breed. 97, 193-203 https://doi.org/10.1111/j.1439-0523.1986.tb01053.x
  12. Genty, B., Briantais, J. M., and Baker, N. R. (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990, 87-92 https://doi.org/10.1016/S0304-4165(89)80016-9
  13. Harris, K., Subudhi, P., Borrell, A., Jordan, D., Rosenow, D., et al. (2007) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J. Exp. Bot. 58, JXB Advanced Online Access, doi:10.1093/jxb/erl225
  14. Ishimaru, K., Yano, M., Aoki, N., Ono, K., Hirose, T., et al. (2001) Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed sequence tags. Theor. Appl. Genet. 102, 793-800 https://doi.org/10.1007/s001220000467
  15. Jiang, G. H., He, Y. Q., Xu, C. G., Li, X. H., and Zhang, Q. (2004) The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theor. Appl. Genet. 108, 688-698 https://doi.org/10.1007/s00122-003-1465-z
  16. Kooten, O. V. and Snel, J. F. H. (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res. 25, 147-150, 1990 https://doi.org/10.1007/BF00033156
  17. Kosambi, D. D. (1994) The estimation of map distances from recombination values. Ann. Eugen. 12, 172-175
  18. Lander, E. S. and Botstein, D. (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185-199
  19. Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., et al. (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174-181 https://doi.org/10.1016/0888-7543(87)90010-3
  20. Larcher, W. (2003) Plants under stress; in Physiological Plant Ecology, Ecophysiology and Stress Physiology of Functional Groups, 4th ed., pp. 345-450, Springer, Berlin
  21. Lee, S. Y., Ahn, J. H., Cha, Y. S., Yun, D. W., Lee, M. C., et al. (2006) Mapping of quantitative trait loci for salt tolerance at the seedling stage in rice. Mol. Cells 21, 192-196
  22. Li, Z., Pinson, S. R., Paterson, A. H., Park, W. D., and Stansel, J. W. (1997) Genetics of hybrid sterility and hybrid breakdown in an intersubspecific rice (Oryza sativa L.) population. Genetics 145, 1139-1148
  23. Lincoln, S. E., Daly, M. J., and Lander, E. S. (1993) Constructing genetic linkage maps with MAPMAKER/EXP version 3.0. A tutorial and reference manual, 3rd ed., Technical Report, Whitehead Institute for Biomedical Research
  24. Luquez, V. M., Sasal, Y., Medrano, M., Martin, M. I., Mujica, M., et al. (2006) Quantitative trait loci analysis of leaf and plant longevity in Arabidopsis thaliana. J. Exp. Bot. 57, 1363-1372 https://doi.org/10.1093/jxb/erj112
  25. Mae, T. (1997) Physiological nitrogen efficiency in rice: Nitrogen utilization, photosynthesis, and yield potential. Plant Soil 196, 201-210 https://doi.org/10.1023/A:1004293706242
  26. Murray, M. G. and Thompson, W. F. (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321-4325 https://doi.org/10.1093/nar/8.19.4321
  27. Nelson, J. C. (1997) QGENE: software for marker-based genomics analysis and breeding. Mol. Breed. 3, 239-245 https://doi.org/10.1023/A:1009604312050
  28. Park, J. H. and Lee, B. W. (2003) Photosynthetic characteristics of rice cultivars with depending on leaf senescence during grain filling. Korean J. Crop Sci. 48, 216-223
  29. Pierce, R. O., Knowles, P. F., and Phillips, D. A. (1984) Inheritance of delayed leaf senescence in soybean. Crop Sci. 24, 515-518 https://doi.org/10.2135/cropsci1984.0011183X002400030021x
  30. Rampino, P., Spano, G., Pataleo, S., Mita, G., Napier, J. A., et al. (2006) Molecular analysis of a durum wheat 'stay green' mutant: expression pattern of photosynthesis-related genes. J. Cereal Sci. 43, 160-168 https://doi.org/10.1016/j.jcs.2005.07.004
  31. Rosenow, D. T., Quisenberry, J. E., Wendt, C. W., and Clark, L. E. (1983) Drought-tolerant sorghum and cotton germplasm. Agric. Water Manage 7, 207-222
  32. Sanchez, A. C., Subudhi, P. K., Rosenow, D. T., and Nguyen, H. T. (2002) Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol. Biol. 48, 713-726 https://doi.org/10.1023/A:1014894130270
  33. Schittenhelm, S., Menge-Hartmann, U., and Oldenburg, E. (2004) Photosynthesis, carbohydrate metabolism, and yield of phytochrome-B-overexpressing potatoes under different light regimes. Crop Sci. 44, 131-143 https://doi.org/10.2135/cropsci2004.0131
  34. Spano, G., Di Fonzo, N., Perrotta, C., Platani, C., Ronga, G., et al. (2003) Physiological characterization of 'stay green' mutants in durum wheat. J. Exp. Bot. 54, 1415-1420 https://doi.org/10.1093/jxb/erg150
  35. Tan, Y. F., Xing, Y. Z., Li, J. X., Yu, S. B., Xu, C. G., et al. (2000) Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor. Appl. Genet. 101, 823-829 https://doi.org/10.1007/s001220051549
  36. Temnykh, S., Declerck, G., Luashova, A., Lipovich, L., Cartinhour, S., et al. (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 11, 1441-1452 https://doi.org/10.1101/gr.184001
  37. Temnykh, S., Park, W. D., Ayres, N., Cartihour, S., Hauck, N., et al. (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor. Appl. Genet. 100, 697-712 https://doi.org/10.1007/s001220051342
  38. Teng, S., Qian, Q., Zeng, D., Kunihiro, Y., Fujimoto, K., et al. (2004) QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.). Euphytica 135, 1-7 https://doi.org/10.1023/B:EUPH.0000009487.89270.e9
  39. Thomas, H. (1987) Sid: a Mendelian locus controlling thylakoid membrane disassembly in senescing leaves of Festuca pratensis. Theor. Appl. Genet. 99, 92-99 https://doi.org/10.1007/s001220051212
  40. Thomas, H. (1997) Introgression, tagging and expression of a leaf senescence gene in Festulolium. New Phytol. 137, 29-34 https://doi.org/10.1046/j.1469-8137.1997.00830.x
  41. Thomas, H. and Howarth, C. J. (2000) Five ways to stay green. J. Exp. Bot. 51, 329-337 https://doi.org/10.1093/jexbot/51.suppl_1.329
  42. Thomas, H. and Stoddart, J. L. (1975) Separation of chlorophyll degradation from other senescence processes in leaves of a mutant genotype of meadow fescue (Festuca pratensis L.). Plant Physiol. 56, 438-441 https://doi.org/10.1104/pp.56.3.438
  43. Walulu, R. S., Rosenow, D. T., Wester, D. B., and Nguyen, H. T. (1994) Inheritance of the stay-green trait in sorghum. Crop Sci. 34, 970-972 https://doi.org/10.2135/cropsci1994.0011183X003400040026x
  44. Wang, D. L., Zhu, J., Li, Z. K., and Paterson, A. H. (1999) User manual for QTL. Mapper version 1.0. 1-57
  45. Xu, W., Subudhi, P. K., Crasta, O. R., Rosenow, D. T., Mullet, J. E., et al. (2000) Molecular mapping of QTLs conferring staygreen in grain sorghum (Sorghum bicolor L. Moench). Genome 43, 461-469 https://doi.org/10.1139/gen-43-3-461
  46. Yamaya, T., Obara, M., Nakajima, H., Sasaki, S., Hayakawa, T., et al. (2002) Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J. Exp. Bot. 53, 917-925 https://doi.org/10.1093/jexbot/53.370.917
  47. Yanagihara, S., McCouch, S. R., Ishikawa, K., Ogi, Y., Maruyama, K., et al. (1995) Molecular analysis of the inheritance of the S-5 locus, conferring wide compatibility in indica/japonica hybrids of rice (Oryza sativa L.). Theor. Appl. Genet. 90, 182-188
  48. Yue, B., Xue, W. Y., Luo, L. J., and Xing, Y. Z. (2006) QTL analysis for flag leaf characteristics and their relationships with yield and yield traits in rice. Yi Chuan Xue Bao 33, 824-832