Nucleotide Triphosphates Inhibit the Degradation of Unfolded Proteins by HslV Peptidase

  • Lee, Jung Wook (School of Biological Sciences, Seoul National University) ;
  • Park, Eunyong (School of Biological Sciences, Seoul National University) ;
  • Bang, Oksun (School of Biological Sciences, Seoul National University) ;
  • Eom, Soo-Hyun (Department of Biological Sciences, Gwangju Institute of Science and Technology) ;
  • Cheong, Gang-Won (Division of Applied Life Sciences and Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Chung, Chin Ha (School of Biological Sciences, Seoul National University) ;
  • Seol, Jae Hong (School of Biological Sciences, Seoul National University)
  • Received : 2007.01.23
  • Accepted : 2007.01.29
  • Published : 2007.04.30

Abstract

Escherichia coli HslVU is an ATP-dependent protease consisting of two heat shock proteins, the HslU ATPase and HslV peptidase. In the reconstituted enzyme, HslU stimulates the proteolytic activity of HslV by one to two orders of magnitude, while HslV increases the rate of ATP hydrolysis by HslU several-fold. Here we show that HslV alone can efficiently degrade certain unfolded proteins, such as unfolded lactalbumin and lysozyme prepared by complete reduction of disulfide bonds, but not their native forms. Furthermore, HslV alone cleaved a lactalbumin fragment sandwiched by two thioredoxin molecules, indicating that it can hydrolyze the internal peptide bonds of lactalbumin. Surprisingly, ATP inhibited the degradation of unfolded proteins by HslV. This inhibitory effect of ATP was markedly diminished by substitution of the Arg86 residue located in the apical pore of HslV with Gly, suggesting that interaction of ATP with the Arg residue blocks access of unfolded proteins to the proteolytic chamber of HslV. These results suggest that uncomplexed HslV is inactive under normal conditions, but may can degrade unfolded proteins when the ATP level is low, as it is during carbon starvation.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation

References

  1. Acharya, K. R., Ren, J. S., Stuart, D. I., Phillips, D. C., and Fenna, R. E. (1991) Crystal structure of human alpha-lactalbumin at 1.7 $\AA$ resolution. J. Mol. Biol. 221, 571−581
  2. Bochtler, M., Ditzel, L., Groll, M., and Huber, R. (1997) Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc. Natl. Acad. Sci. USA 94, 6070−6074
  3. Bochtler, M., Hartmann, C., Song, H. K., Bourenkov, G. P., Bartunik, H. D., et al. (2000) The structures of HslU and the ATPdependent protease HslU-HslV. Nature 403, 800−805
  4. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248−254
  5. Chuang, S. E., Burland, V., Plunkett, G., 3rd, Daniels, D. L., and Blattner, F. R. (1993) Sequence analysis of four new heatshock genes constituting the hslTS/ibpAB and hslVU operons in Escherichia coli. Gene 134, 1−6
  6. Chung, C. H. (1993) Proteases in Escherichia coli. Science 262, 372−374 https://doi.org/10.1126/science.262.5132.374
  7. Chung, C. H., Yoo, S. J., Seol, J. H., and Kang, M. S. (1997) Characterization of energy-dependent proteases in bacteria. Biochem. Biophys. Res. Commun. 241, 613−616
  8. De Mot, R., Nagy, I., Walz, J., and Baumeister, W. (1999) Proteasomes and other self-compartmentalizing proteases in prokaryotes. Trends Microbiol. 7, 88−92
  9. Ewbank, J. J. and Creighton, T. E. (1993) Pathway of disulfidecoupled unfolding and refolding of bovine alpha-lactalbumin. Biochemistry, 32, 3677−3693
  10. Gaal, T., Bartlett, M. S., Ross, W., Turnbough, C. L. Jr., and Gourse, R. L. (1997) Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. Science 278, 2092−2097
  11. Goldberg, A. L. (1992) The mechanism and functions of ATPdependent proteases in bacterial and animal cells. Eur. J. Biochem. 203, 9−23
  12. Goldber, A. L. and St. John, A. C. (1976) Intracellular protein degradation in mammalian and bacterial cells: part 2. Annu. Rev. Biochem. 45, 747−803
  13. Gottesman, S. (1996) Proteases and their targets in Escherichia coli. Annu. Rev. Genet. 30, 465−506
  14. Gottesman, S. (2003) Proteolysis in bacterial regulatory circuits. Annu. Rev. Cell Dev. Biol. 19, 565−587
  15. Gottesman, S. and Maurizi, M. R. (1992) Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol. Rev. 56, 592−621
  16. Groll, M., Bajorek, M., Kohler, A., Moroder, L., Rubin, D. M., et al. (2000) A gated channel into the proteasome core particle. Nat. Struct. Biol. 7, 1062−1067
  17. Hiraoka, Y., Segawa, T., Kuwajima, K., Sugai, S., and Murai, N. (1980) Alpha-Lactalbumin: a calcium metalloprotein. Biochem. Biophys. Res. Commun. 95, 1098−10104
  18. Holt, C. and Sawyer, L. (1988) Primary and predicted secondary structures of the caseins in relation to their biological functions. Protein Eng. 2, 251−259
  19. Liu, C. W., Corboy, M. J., DeMartino, G. N., and Thomas, P. J. (2003) Endoproteolytic activity of the proteasome. Science 299, 408−411 https://doi.org/10.1126/science.1078942
  20. Maurizi, M. R. (1992) Proteases and protein degradation in Escherichia coli. Experientia 48, 178−201 https://doi.org/10.1007/BF01923512
  21. Park, E., Rho, Y. M., Koh, O., Ahn, S. W., Seong, I. S., et al. (2005) Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase J. Biol. Chem. 280, 22892−22898
  22. Park, S. C., Jia, B., Yang, J. K., Van, D. L., Shao, Y. G., et al. (2006) Oligomeric structure of the ATP-dependent protease La (Lon) of Escherichia coli. Mol. Cells 21, 129−134
  23. Rohrwild, M., Coux, O., Huang, H. C., Moerschell, R. P., Yoo, S. J., et al. (1996) HslV-HslU: A novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome. Proc. Natl. Acad. Sci. USA 93, 5808−5813
  24. Schagger, H. and von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368−379
  25. Seemuller, E., Lupas, A., Stock, D., Lowe, J., Huber, R., et al. (1995) Proteasome from Thermoplasma acidophilum: a threonine protease. Science 268, 579−582 https://doi.org/10.1126/science.7725108
  26. Seol, J. H., Yoo, S. J., Shin, D. H., Shim, Y. K., Kang, M. S., et al. (1997) The heat-shock protein HslVU from Escherichia coli is a protein-activated ATPase as well as an ATP-de-pendent proteinase. Eur. J. Biochem. 247, 1143−1150
  27. Seong, I. S., Oh, J. Y., Yoo, S. J., Seol, J. H., and Chung, C. H. (1999) ATP-dependent degradation of SulA, a cell division inhibitor, by the HslVU protease in Escherichia coli. FEBS Lett. 456, 211−214
  28. Seong, I. S., Oh, J. Y., Lee, J. W., Tanaka, K., and Chung, C. H. (2000) The HslU ATPase acts as a molecular chaperone in prevention of aggregation of SulA, an inhibitor of cell division in Escherichia coli. FEBS Lett. 477, 224−229 https://doi.org/10.1016/S0014-5793(00)01805-6
  29. Seong, I. S., Kang, M. S., Choi, M. K., Lee, J. W., Koh, O. J., et al. (2002) The C-terminal tails of HslU ATPase act as a molecular switch for activation of HslV peptidase. J. Biol. Chem. 277, 25976−25982
  30. Sousa, M. C., Trame, C. B., Tsuruta, H., Wilbanks, S. M., Reddy, V. S., et al. (2000) Crystal and solution structures of an HslUV protease-chaperone complex. Cell 103, 633−643
  31. St. John, A. C. and Goldberg, A. L. (1978) Effects of reduced energy production on protein degradation, guanosine tetraphosphate, and RNA synthesis in Escherichia coli. J. Biol. Chem. 253, 2705−2711
  32. Syme, C. D., Blanch, E. W., Holt, C., Jakes, R., Goedert, M., et al. (2002) A raman optical activity study of rheomorphism in caseins, synucleins and tau. New insight into the structure and behavior of natively unfolded proteins. Eur. J. Biochem. 269, 148−156
  33. Wang, J., Hartling, J. A., and Flanagan, J. M. (1998) Crystal structure determination of Escherichia coli ClpP starting from an EM-derived mask. J. Struct. Biol. 124, 151−163
  34. Wang, J., Song, J. J., Franklin, M. C., Kamtekar, S., Im, Y. J., et al. (2001a) Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9, 177−184
  35. Wang, J., Song, J. J., Seong, I. S., Franklin, M. C., Kamtekar, S., et al. (2001b) Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. Structure 9, 1107−1116
  36. Wenzel, T. and Baumeister, W. (1995) Conformational constraints in protein degradation by the 20S proteasome. Nat. Struct. Biol. 2, 199−204
  37. Whitby, F. G., Masters, E. I., Kramer, L., Knowlton, J. R., Yao, Y., et al. (2000) Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408, 115−120 https://doi.org/10.1038/35040609
  38. Yoo, S. J., Seol, J. H., Shin, D. H., Rohrwild, M., Kang, M. S., et al. (1996) Purification and characterization of the heat shock proteins HslV and HslU that form a new ATP-de-pendent protease in Escherichia coli. J. Biol. Chem. 271, 14035−14040
  39. Yoo, S. J., Shim, Y. K., Seong, I. S., Seol, J. H., Kang, M. S., et al. (1997a) Mutagenesis of two N-terminal Thr and five Ser residues in HslV, the proteolytic component of the ATP-dependent HslVU protease. FEBS Lett. 412, 57−60
  40. Yoo, S. J., Seol, J. H., Seong, I. S., Kang, M. S., and Chung, C. H. (1997b) ATP binding, but not its hydrolysis, is required for assembly and proteolytic activity of the HslVU protease in Escherichia coli. Biochem. Biophys. Res. Commun. 238, 581−585