DOI QR코드

DOI QR Code

Sensitive determination of paroxetine in canine plasma by liquid chromatography-tandem mass spectrometry (LC-MS/MS)

LC-MS/MS를 이용한 비글견 혈장 중 파록세틴의 고감도 분석

  • Chang, Kyu Young (Dept. of Drug Development Supporting Service. BioCore Co., Ltd.) ;
  • Kang, Seung Woo (Dept. of Drug Development Supporting Service. BioCore Co., Ltd.) ;
  • Han, Sang Beom (College of Pharmacy, Chung-Ang University) ;
  • Youm, Jeong-Rok (College of Pharmacy, Chung-Ang University) ;
  • Lee, Kyung Ryul (Dept. of Drug Development Supporting Service. BioCore Co., Ltd.) ;
  • Lee, Hee Joo (Dept. of Drug Development Supporting Service. BioCore Co., Ltd.)
  • 장규영 (바이오코아(주) 신약개발지원사업부) ;
  • 강승우 (바이오코아(주) 신약개발지원사업부) ;
  • 한상범 (중앙대학교 약학대학) ;
  • 염정록 (중앙대학교 약학대학) ;
  • 이경률 (바이오코아(주) 신약개발지원사업부) ;
  • 이희주 (바이오코아(주) 신약개발지원사업부)
  • Received : 2006.11.07
  • Accepted : 2007.02.27
  • Published : 2007.04.28

Abstract

A simple and sensitive method for the determination of paroxetine in canine plasma was developed and validated by liquid-liquid extraction and liquid chromatography-tandem mass spectrometry (LC-/MS/MS). Fluoxetine was used as an internal standard. Paroxetine and internal standard in plasma samples were extracted using TBME (tert-butyl methyl ether). A centrifuged upper layer was then evaporated and reconstituted with mobile phase of 50% acetonitrile adjusted to pH 3 by formic acid. The reconstituted samples were injected into a Capcell Pak UG120 ($2.0{\times}150mm$, $5{\mu}m$) column. Using MS/MS with SRM (selective reaction monitoring) mode, the transitions (precursor to product) monitored were m/z $330{\rightarrow}192$ for paroxetine, and m/z $310{\rightarrow}148$ for internal standard. Linear detection responses were obtained for paroxetine concentration range of 0.02~5 ng/mL. A correlation coefficient of linear regression ($R^2$) was 0.9993. Detection of paroxetine in canine plasma was accurate and precise, with limit of quantification at 0.02 ng/mL. The method has been successfully applied to pharmacokinetic study of paroxetine in healthy beagle dogs.

본 연구에서는 비글견 혈장 중의 파록세틴을 액체상추출법(LLE)으로 전처리하고 액체크로마토그래피-탠덤질량분석기(LC-MS/MS)로 신속하게 분석하는 방법을 개발하였다. 파록세틴과 내부표준물질로 사용한 플루오세틴을 TBME(tert-butyl methyl ether)로 추출하고 상층액을 취하여 건조시킨 후, 이동상 $100{\mu}L$로 재분산하여 LC-MS/MS에 주입하였다. HPLC 분석조건으로 Capcell Pak UG120($2.0{\times}150mm$, $5{\mu}m$) 컬럼을 사용하였으며, 이동상은 50% 아세토니트릴(pH 3, formic acid로 조정) 용액을 사용하였고, 유량은 0.2 mL/min으로 하였다. MS/MS의 SRM(selective reaction monitoring) 방법으로 파록세틴과 플루오세틴의 선구 이온, 생성 이온을 각각 m/z $330{\rightarrow}192$, m/z $310{\rightarrow}148$로 분석한 결과 0.02~5 ng/mL의 농도범위에서 상관계수($R^2$) 0.9993으로 좋은 직선성을 나타내었다. 또한 정량한계는 0.02 ng/mL이며, 정밀성은 일내 및 일간 변동계수가 7.67% 이하이고, 정확도는 92.96~102.99%로 비글견 혈장 중의 파록세틴의 약물동력학 연구에 이용될 수 있는 충분한 감도와 특이성, 직선성, 정밀성 및 정확성을 갖고 있음을 확인하였다.

Keywords

References

  1. G. C. Dunbar, J. B. Cohn, L. F. Fabre, J. P. Feighner, R.R. Fieve, J. Mendels and R. K. Shrivastava, Br. J. Psychiatry, 159, 394-398 (1991) https://doi.org/10.1192/bjp.159.3.394
  2. C. G. Gottfries, I. Karlsson and A. L. Nyth, Int. Clin. Psychopharmacol, 6, 354-359 (1992)
  3. S. M. Holliday and G. L. Plosker, Drugs Aging, 3 278- 299 (1993) https://doi.org/10.2165/00002512-199303030-00008
  4. R. Lane, D. Baldwin and S. Preskom, J. Psychopharmacol, 9, 5-11 (1995) https://doi.org/10.1097/00004850-199501005-00002
  5. D. K. Raap and L. D. Van de Kar, Life Sci, 65, 1217-1235 (1999) https://doi.org/10.1016/S0024-3205(99)00169-1
  6. Y. Zhang, D. K. Raap, F. Garcia, F. Serres, Q. Ma, G. Battaglia and L. D. Van de Kar, Brain Res, 855, 58-66 (2000) https://doi.org/10.1016/S0006-8993(99)02289-1
  7. B. Rodriguez de la Torre, J. Dreher, I. Malevany, M. Bagli, M. Kolbinger, H. Omran, B. Luderitz and M. L. Rao, Ther. Drug. Monit. 23, 435-440 (2001) https://doi.org/10.1097/00007691-200108000-00019
  8. C. Duverneuil, G. L. de la Grandmaison, P. de Mazancourt and J. C. Alvarez, Ther. Drug. Monit. 25, 565-573 (2003) https://doi.org/10.1097/00007691-200310000-00005
  9. K. Titier, N. Castaing, E. Scotto-Gomez, F. Pehourcq, N. Moore and M. Molimard, Ther. Drug. Monit, 25, 581-587 (2003) https://doi.org/10.1097/00007691-200310000-00007
  10. C. Hiemke and S. Hrtter, Pharmacol. and Ther., 85, 11-28 (2000) https://doi.org/10.1016/S0163-7258(99)00048-0
  11. J. P. Foglia, D. Sorisio, M. Kirshner and B. G. Pollock, J. Chromatogr. B, 693, 147-151 (1997) https://doi.org/10.1016/S0378-4347(97)00010-8
  12. J. G. Shin, K. A. Kim, Y. R. Yoon, I. J. Cha, Y. H. Kim and S. G. Shin, J. Chromatogr. B, 713, 452-456 (1998) https://doi.org/10.1016/S0378-4347(98)00203-5
  13. C. Lpez-Calull and N. Dominguez, J. Chromatogr. B, 724, 393-398 (1999) https://doi.org/10.1016/S0378-4347(98)00560-X
  14. I. A. Zainaghi, V. L. Lanchote and R. H. C. Queiroz, Pharmacol. Res., 48, 217-221 (2003) https://doi.org/10.1016/S1043-6618(03)00098-7
  15. C. T. Lai, E. S. Gorden, S. H. Kennedy, A. N. Bateson, R. T. Coutts and G. B. Baker, J. Chromatogr. B, 749, 275-279 (2000) https://doi.org/10.1016/S0378-4347(00)00389-3
  16. H. J. Leis, W. Windischhofer and G. Fauler, J. Chromatogr. B, 779, 353-357 (2002) https://doi.org/10.1016/S1570-0232(02)00378-1
  17. H. Juan, Z. Zhiling and L. Huande, J. Chromatogr. B, 820, 33-39 (2005) https://doi.org/10.1016/j.jchromb.2005.03.006
  18. M. Segura, J. Ortuno, M. Farre, R. Pacifici, S. Pichini, J. Joglar and J. Segura, Rapid Commun. Mass Spectrom., 17, 1455-1461 (2003) https://doi.org/10.1002/rcm.1067
  19. Z. Zhu and L. Neirinck, J Chromatogr. B Analyt Technol. Biomed. Life Sci., 780, 295-300 (2002) https://doi.org/10.1016/S1570-0232(02)00537-8
  20. W. Naidong and A. Eerkes, Biomed. Chromatogr., 18, 28-36 (2004) https://doi.org/10.1002/bmc.288
  21. P. Massaroti, N. M. Cassiano, L. F. Duarte, D.R. Campos, M. A. M. Marchioretto, G. Bernasconi, S. Calafatti, F. A. P. Barros, E. C. Meurer and J. Pedrazzoli, J. Pharm. Pharmaceut. Sci., 8, 340-347 (2005)