Clostridium beijerinckii Donker 1926을 이용한 혐기성 소화공정에서 체류시간 변화에 의한 수소 생산과 동력학적 특성

Effect of Hydraulic Retention Time (HRT) on the Hydrogen Production and Its Dynamic Characteristics in the Anaerobic Digestion Process Using Clostridium beijerinckii Donker 1926

  • 정태영 (연세대학교 환경공학부) ;
  • 차기철 (연세대학교 환경공학부) ;
  • 최석순 (세명대학교 바이오환경공학과)
  • Jeong, Tae-Young (Division of Environmental Engineering, Yonsei University) ;
  • Cha, Gi-Cheol (Division of Environmental Engineering, Yonsei University) ;
  • Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University)
  • 투고 : 2007.02.01
  • 심사 : 2007.02.28
  • 발행 : 2007.04.10

초록

본 연구에서는 Clostridium beijerinckii Donker 1926을 이용한 연속식 혐기성 소화공정에서 수소 생산과 동력학적 특성을 고찰하였다. 기질은 glucose를 사용하였고, 0.5, 0.25, 0.125일의 체류시간 (hydraulic retention time, HRT)에서 실험이 이루어졌으며, 모든 HRT의 조건에서 탄산화물은 99% 이상의 제거효율를 나타내었다. 체류시간이 짧을수록, COD 제거율은 낮은 반면에, 전체 가스 중에서 수소 가스 함량과 수소 발생량이 높게 나타났다. 또한, 정상상태에서, 증식 수율과 수소가스 생성 수율은 각각 0.27 g-VSS/g- glucose, 0.26 L/g-glucose로 나타났다. 본 실험에 사용된 균주를 glucose와 같이 당 성분이 함유된 폐수처리에 적용하면 수소를 생산할 수 있으며, 이러한 실험 결과들을 잘 활용하면 대체에너지로서, 실제적인 수소가스 생산 시스템에 적용할 수 있을 것이다.

Hydrogen production and its dynamics were investigated in the continuous anaerobic digestion process using Clostridium beijerinckii Donker 1926. In this work, glucose was used as a substrate and hydraulic retention times (HRT) were 0.5, 0.25 or 0.125 day. The removal efficiency of carbohydrate was over 99% under all of HRT conditions. As HRT was shorter, COD removal efficiency became lower while hydrogen content in the total gas and hydrogen production rate became higher. The cell growth yield and hydrogen production yield were 0.27 g-VSS/g-glucose and 0.26 L/g-glucose, respectively, at the steady state. It is expected that the microorganism is able to produce hydrogen when used in the wastewater treatment containing carbohydrate such as glucose. Also, the results in this study could be applied to the actual hydrogen gas production, a promising alternative energy.

키워드

참고문헌

  1. T. W. Jeffries, D. R. Omstead, R. R. Cardenas, and H. P. Gregor, Biotech. Bioeng. Symp., 9, 37 (1979)
  2. A. M. Breue and J. G. Andel, Applied Microbiol. Biotech., 20, 40 (1984) https://doi.org/10.1007/BF00254644
  3. T. Fumiaki, J. D. Chang, N. Mizukami, S. T. Tatsuo, and H. Katsushige, Can. J. Microbiol., 39, 726 (1993)
  4. H. Yokoi, T. Ohkawa, J. Hirosse, S. Hayashi, and Y. Takasaki, J. Ferment. Bioeng., 80, 571 (1995)
  5. A. M. Gibson, N. Bratchell, and T. A. Roberts, J. Appl. Bacteriol., 62, 479 (1987) https://doi.org/10.1111/j.1365-2672.1987.tb02680.x
  6. F. Taguchi, J. D. Chang, S. Takiguchi, and M. Morimoto, J. Ferment. Bioeng., 73, 244 (1992) https://doi.org/10.1016/0922-338X(92)90172-Q
  7. P. Perego, B. Fabiano, G. P. Ponzano, and E. Palazzi, Bioproc. Eng., 19, 205 (1998)
  8. J. J. Lay, Y. Y. Li, and T. Noike, J. Environ. Eng., 124, 730 (1998)
  9. APHA, Standard Methods for the Examination of Water and Wastewater, 17th ed., American Public Health Association, Washington, DC (1989)
  10. V. A. Vavilin, S. V. Rytov, and L. Ya. Lokshina, Bioresource Technology, 56, 229 (1996)
  11. K. Naoaki, M Akiko, and K. Koichi, Water Science and Technology, 36, 41 (1997)
  12. S. Ghosh and F. G. Pohland, J. Water Poll. Control Fed., 46, 748 (1974)
  13. P. L. McCarty, Adv. Chem. Ser., 105 (1971)
  14. J. Monod, Ann. Rev. Microbiol., 3, 371 (1949) https://doi.org/10.1146/annurev.mi.03.100149.002103
  15. M. H. Zwietering, I. Jongenburger, F. M. Rombouts, and K. V. Riet, Applied and Environmental Microbiology, 56, 1875 (1990)
  16. A. L. Lehninger, Biochemistry, Worth Publishers Inc., New York (1970)