Distortion of the Dose Profile in a Three-dimensional Moving Phantom to Simulate Tumor Motion during Image-guided Radiosurgery

방사선수술에서 종양 움직임을 재현시킨 움직이는 팬텀을 이용하여 선량 분포의 왜곡에 대한 연구

  • Kim, Mi-Sook (Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences) ;
  • Ha, Seong-Hwan (Department of Radiation Oncology, Seoul National University College of Medicine) ;
  • Lee, Dong-Han (Department of CyberKnife Center, Korea Institute of Radiological and Medical Sciences) ;
  • Ji, Young-Hoon (Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences) ;
  • Yoo, Seong-Yul (Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences) ;
  • Cho, Chul-Koo (Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences) ;
  • Yang, Kwang-Mo (Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences) ;
  • Yoo, Hyung-Jun (Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences) ;
  • Seo, Young-Seok (Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences) ;
  • Park, Chan-Il (Department of Radiation Oncology, Seoul National University College of Medicine) ;
  • Kim, Il-Han (Department of Radiation Oncology, Seoul National University College of Medicine) ;
  • Ye, Seong-Jun (Department of Radiation Oncology, Seoul National University College of Medicine) ;
  • Park, Jae-Hong (Department of CyberKnife Center, Korea Institute of Radiological and Medical Sciences) ;
  • Kim, Kum-Bae (Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences)
  • 김미숙 (원자력병원 방사선종양학과) ;
  • 하성환 (서울대학교 의과대학 방사선종양학교실) ;
  • 이동한 (원자력병원 사이버나이프센터) ;
  • 지영훈 (원자력병원 방사선종양학과) ;
  • 류성렬 (원자력병원 방사선종양학과) ;
  • 조철구 (원자력병원 방사선종양학과) ;
  • 양광모 (원자력병원 방사선종양학과) ;
  • 유형준 (원자력병원 방사선종양학과) ;
  • 서영석 (원자력병원 방사선종양학과) ;
  • 박찬일 (서울대학교 의과대학 방사선종양학교실) ;
  • 김일한 (서울대학교 의과대학 방사선종양학교실) ;
  • 예성준 (서울대학교 의과대학 방사선종양학교실) ;
  • 박재홍 (원자력병원 사이버나이프센터) ;
  • 김금배 (원자력병원 방사선종양학과)
  • Published : 2007.12.30

Abstract

Purpose: Respiratory motion is a considerable inhibiting factor for precise treatment with stereotactic radiosurgery using the CyberKnife (CK). In this study, we developed a moving phantom to simulate three-dimensional breathing movement and investigated the distortion of dose profiles between the use of a moving phantom and a static phantom. Materials and Methods: The phantom consisted of four pieces of polyethylene; two sheets of Gafchromic film were inserted for dosimetry. Treatment was planned to deliver 30 Gy to virtual tumors of 20, 30, 40, and 50 mm diameters using 104 beams and a single center mode. A specially designed robot produced three-dimensional motion in the right-left, anterior-posterior, and craniocaudal directions of 5, 10 and 20 mm, respectively. Using the optical density of the films as a function of dose, the dose profiles of both static and moving phantoms were measured. Results: The prescribed isodose to cover the virtual tumors on the static phantom were 80% for 20 mm, 84% for 30 mm, 83% for 40 mm and 80% for 50 mm tumors. However, to compensate for the respiratory motion, the minimum isodose levels to cover the moving target were 70% for the $30{\sim}50$ mm diameter tumors and 60% for a 20 mm tumor. For the 20 mm tumor, the gaps between the isodose curves for the static and moving phantoms were 3.2, 3.3, 3.5 and 1.1 mm for the cranial, caudal, right, and left direction, respectively. In the case of the 30 mm tumor, the gaps were 3.9, 4.2, 2.8, 0 mm, respectively. In the case of the 40 mm tumor, the gaps were 4.0, 4.8, 1.1, and 0 mm, respectively. In the case of the 50 mm diameter tumor, the gaps were 3.9, 3.9, 0 and 0 mm, respectively. Conclusion: For a tumor of a 20 mm diameter, the 80% isodose curve can be planned to cover the tumor; a 60% isodose curve will have to be chosen due to the tumor motion. The gap between these 80% and 60% curves is 5 mm. In tumors with diameters of 30, 40 and 50 mm, the whole tumor will be covered if an isodose curve of about 70% is selected, equivalent of placing a respiratory margin of below 5 mm. It was confirmed that during CK treatment for a moving tumor, the range of distortion produced by motion was less than the range of motion itself.

목적: 호흡에 의한 종양의 움직임은 사이버나이프를 이용한 정위적 방사선수술과 같은 정확한 치료에 있어 고려할 만한 방해 요인이다 이 연구에서는 사이버나이프를 이용한 방사선 수술의 Interplay현상을 보고자 팬텀을 움직이게 하고 또한 움직이지 않게 하여 선량 분포의 왜곡을 조사하였다. 대상 및 방법: 팬텀은 $2.5{\times}2.5{\times}5.0$ 인치의 4개의 직육면체로 구성된 폴리에틸렌과 2장의 Gafchromic 필름으로 구성되었다. 치료 계획은 20, 30, 40, 50 mm지름을 가진 구를 가상하여 사이버나이프 치료기를 이용하여 104개의 빔 방향과 single center mode의 치료 계획 하에 총 30 Gy를 조사하였다. 특별히 제작된 로봇은 팬텀을 좌우, 전후, 두미쪽으로 각각 5, 10, 20 mm 움직이도록 고안되었다. 필름의 optical density을 이용하여 정적인 상태의 팬텀과 로봇에 의해 움직일 때의 팬텀의 선량 분포를 구하였다. 결 과: 정적인 상태에서 종양을 모두 포함할 수 있는 최소의 등선량은 20 mm 종양의 경우 80%, 30 mm에 84%, 40 mm에 83%이며 50 mm 종양에 80%였다. 정적인 상태와 움직일 때의 팬텀 사이에서 발생한 선량 분포의 차이(gap)는 20 mm 종양에서 두미방향으로 각각 3.2, 3.3 cm이며 오른쪽 3.5 mm, 왼쪽 1.1 mm였다. 30 mm 종양의 경우는 각각 3.9, 4.2, 2.8과 0 mm였고 40 mm 종양은 각각 4.0, 4.8, 1.1, 0 mm였다. 50 mm 종양의 경우 각각 3.9, 3.9, 0.0 mm였다. 결 론: 20 mm의 적은 종양을 치료할 때 80%의 등선량이 계획되더라도 움직이는 실제 치료에 있어 종양 움직임을 보완하기 위하여 60% 등선량으로 처방할 필요가 있다. 이때 두 등선량 곡선의 차이는 5 mm정도이다. 또한 30, 40과 50 mm의 종양에서는 움직임을 보완하기 위하여 등선량 곡선을 70%정도로 처방할 필요가 있다. 이때의 차이도 약 5 mm 미만이다. 이는 사이버나이프를 이용한 방사선수술 시 움직임 그 차체 보다 여유폭을 적게 줄 수 있다는 의미이며 이는 일반 방사선치료와 다른 점이라 할 수 있다.

Keywords

References

  1. Balter JM, Ten Haken RK, Lawrence TS, Lam KL, Robertson JM. Uncertainties in CT-based radiation therapy treatment planning associated with patient breathing. Int J Radiat Oncol Biol Phys 1996;36:167-174
  2. McCarter SD, Beckham WA. Evaluation of the validity of a convolution method for incorporating tumour movement and set-up variations into the radiotherapy treatment planning system. Phys Med Biol 2000;45:923-931 https://doi.org/10.1088/0031-9155/45/4/308
  3. Yamamoto M. Gamma knife radiosurgery: technology, applications, and future directions. Neurosurg Clin N Am 1999; 10:181-202
  4. Litzenberg DW, Hadley SW, Tyagi N, Balter JM, Ten Haken RK, Chetty IJ. Synchronized dynamic dose reconstruction. Med Phys 2007;34:91-102 https://doi.org/10.1118/1.2388157
  5. Verellen D, Tournel K, Van de Steene J, et al. Breathingsynchronized irradiation using stereoscopic kV-imaging to limit influence of interplay between leaf motion and organ motion in 3D‐CRT and IMRT: dosimetric verification and first clinical experience. Int J Radiat Oncol Biol Phys 2006;66:S108-19
  6. Jiang SB, Pope C, Al Jarrah KM, Kung JH, Bortfeld T, Chen GT. An experimental investigation on intra‐fractional organ motion effects in lung IMRT treatments. Phys Med Biol 2003;48:1773-1784 https://doi.org/10.1088/0031-9155/48/12/307
  7. Ozhasoglu C, Murphy MJ. Issues in respiratory motion compensation during external‐beam radiotherapy. Int J Radiat Oncol Biol Phys 2002;52:1389-1399 https://doi.org/10.1016/S0360-3016(01)02789-4
  8. Yu CX, Jaffray DA, Wong JW. The effects of intra‐fraction organ motion on the delivery of dynamic intensity modulation. Phys Med Biol 1998;43:91-104 https://doi.org/10.1088/0031-9155/43/1/006
  9. Pemler P, Besserer J, Lombriser N, Pescia R, Schneider U. Influence of respiration‐induced organ motion on dose distributions in treatments using enhanced dynamic wedges. Med Phys 2001;28:2234-2240 https://doi.org/10.1118/1.1410121
  10. Hugo GD, Yan D, Liang J. Population and patient‐specific target margins for 4D adaptive radiotherapy to account for intraand inter‐fraction variation in lung tumour position. Phys Med Biol 2007;52:257-274 https://doi.org/10.1088/0031-9155/52/1/017
  11. Naqvi SA, D'Souza WD. A stochastic convolution$^{}$erposition method with isocenter sampling to evaluate intrafraction motion effects in IMRT. Med Phys 2005;32:1156-1163 https://doi.org/10.1118/1.1881832