Continuous Production of Lactosucrose by Immobilized Sterigmatomyces elviae Mutant

  • Lee, Jong-Ho (Department of Chemical and Biological Engineering, Korea University) ;
  • Lim, Jung-Soo (Digital Appliances R&D Team, Samsung Electronics Co. Ltd.) ;
  • Park, Chul-Hwan (Department of Chemical Engineering, Kwangwon University) ;
  • Kang, Seong-Woo (Department of Chemical and Biological Engineering, Korea University) ;
  • Shin, Hyun-Yong (Department of Chemical and Biological Engineering, Korea University) ;
  • Park, Seung-Won (Food Ingredient Division, CJ Food R&D, CJ Corp.) ;
  • Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
  • Published : 2007.09.30

Abstract

In this study, in order to develop a continuous production process of lactosucrose in a packed-bed reactor, Sterigmatomyces elviae ATCC 18894 was selected and mutated. The mutant strain of S. elviae showed 54.3% higher lactosucrose production than the wild type. Reaction conditions such as temperature, pH, substrate concentration and flow rate were also optimized. Under optimized reaction conditions ($50^{\circ}C$, pH 6.0, 25% sucrose and 25% lactose as substrate, flow rate 1.2 ml/min), the maximum concentration of lactosucrose (192 g/l) was obtained. In a packed-bed reactor, continuous production of lactosucrose was performed using S. elviae mutant immobilized in calcium alginate, and about 180 g/l of lactosucrose production was achieved for 48 days.

Keywords

References

  1. Choi, H. J., C. S. Kim, P. Kim, H. C. Jung, and D. K. Oh. 2004. Lactosucrose bioconversion from lactose and sucrose by whole cells of Paenibacillus polymyxa harboring levansucrase activity. Biotechnol. Prog. 20: 1876-1879 https://doi.org/10.1021/bp049770v
  2. Chung, C. H. 2006. Production of glucooligosaccharides and mannitol from Leuconostoc mesenteroides B-742 fermentation and its separation from byproducts. J. Microbiol. Biotechnol. 16: 325-329
  3. Cruz, R., M. Z. Belini, J. G. Belote, and C. R. Vieira. 1998. Production of fructooligosaccharids by the mycelia of Aspergillus japonicus immobilized in calcium alginate. Bioresource Technol. 65: 139-143 https://doi.org/10.1016/S0960-8524(98)00005-4
  4. Fiedurek, J., J. Pielecki, and M. Skowronek. 2000. Direct methods for selecting mutants with increased production of invertase from mutagenized cultures of Aspergillus fumigatus. J. Basic Microb. 40: 111-118 https://doi.org/10.1002/(SICI)1521-4028(200005)40:2<111::AID-JOBM111>3.0.CO;2-B
  5. Fujita, K., K. Hara, H. Hashimoto, and S. Kitahara. 1990. Purification and some properties of $\beta$-fructofuranosidase I from Arthrobacter sp. K-1. Agric. Biol. Chem. 54: 913-919 https://doi.org/10.1271/bbb1961.54.913
  6. Fujita, K., K. Hara, H. Hashimoto, and S. Kitahara. 1990. Transfructosylation catalyzed by $\beta$-fructofuranosidase I from Arthrobacter sp. K-1. Agric. Biol. Chem. 54: 2655-2661 https://doi.org/10.1271/bbb1961.54.2655
  7. Kabusuiki, K., S. Hayasibara, and K. Kagaku. 1992. U.S. Patent 5130239
  8. Kawase, M., A. Pilgrim, T. Araki, and K. Hashimoto. 2001. Lactosucrose production using a simulated moving bed reactor. Chem. Eng. Sci. 56: 453-458 https://doi.org/10.1016/S0009-2509(00)00248-7
  9. Kim. J. M., C. H. Park, S. W. Kim, and S. Y. Kim. 2006. Flux optimization using genetic algorithms in membrane bioreactor. J. Microbiol.Biotechnol. 16: 863-869
  10. Kim, K. A., B. S. Noh, J. K. Lee, S.Y. Kim, Y. C. Park, and D. K. Oh. 2000. Optimization of culture condition for erythritol production by Torula sp. J. Microbiol. Biotechnol. 10: 69-74
  11. Lee, J. C., K. Na, J. M. Yun, and J. K. Hwang. 2001. In vitro bifidogenic effect of nondigestible oligosaccharides isolated from red ginseng marc. J. Microbiol. Biotechnol. 11: 858-862
  12. Lim, J. S., S. W. Park, J. W. Lee, K. K. Oh, and S. W. Kim. 2005. Immobilization of Penicillium citrinum by entrapping cells in calcium alginate for the production of neofructooligosaccharides. J. Microbiol. Biotechnol. 15: 1317-1322
  13. Oku, T. and S. Nakamura. 2003. Comparison of digestibility and breath hydrogen gas excretion of fructo-oligosaccharide, galactosyl-sucrose, and isomalto-oligosaccharides in healthy human subjects. Eur. J. Clin. Nutr. 57: 1150-1156 https://doi.org/10.1038/sj.ejcn.1601666
  14. Park, M. C., J. S. Lim, J. C. Kim, S. W. Park, and S. W. Kim. 2005. Continuous production of neo-fructooligosaccharides by immobilization of whole cells of Penicillium citrinum. Biotechnol. Lett. 27: 127-130 https://doi.org/10.1007/s10529-004-7339-x
  15. Park, N. H., H. J. Choi, and D. K. Oh. 2005. Lactosucrose production by various microorganisms harboring levansucrase activity. Biotechnol. Lett. 27: 495-497 https://doi.org/10.1007/s10529-005-2539-6
  16. Pilgrim, A., M. Kawase, M. Ohashi, K. Fujita, K. Murakami, and K. Hashimoto. 2001. Reaction kinetics and modeling of the enzyme-catalyzed production of lactosucrose using $\beta$-fructofuranosidase from Arthrobacter sp. K-1. Biosci. Biotechnol. Biochem. 65: 758-765 https://doi.org/10.1271/bbb.65.758
  17. Seo, H. P., K. I. Jo, C. W. Son, J. K. Yang, C. H. Chung, S. W. Nam, S. K. Kim, and J. W. Lee. 2006. Continuous production of pullulan by Aureobasidium pullulans HP-2001 with feeding of high concentration of sucrose. J. Microbiol. Biotechnol. 16: 374-380
  18. Takaichi, A., T. Okamoto, Y. Azuma, Y. Watanabe, T. Matsumoto, K. Miyata, S. Sakamoto, H. Okamatsu, and M. Kumemura. 1994. U.S. Patent 5455235
  19. Yun, J. W., K. W. Jung, Y. J. Jeon, and J. H. Lee. 1992. Continuous production of fructo-oligosaccharides from sucrose by immobilized cells of Aureobasidium pullulans. J. Microbiol. Biotechnol. 2: 98-101
  20. Yun, J. W., J. S. Nob, M. G. Lee, and S. K. Song. 1993. Production of fructo-oligosaccharides by the mixed-enzyme system of fructosyltransferase and glucose isomerase. J. Korean Ind. Chem. Eng. 31: 846-851