Zinc Metal Solubilization by Gluconacetobacter diazotrophicus and Induction of Pleomorphic Cells

  • Saravanan, Venkatakrishnan Sivaraj (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Osborne, Jabez (School of Bio-Technology, Chemical and Bio-Medical Engineering, Vellore Institute of Technology (VIT) University) ;
  • Madhaiyan, Munusamy (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Mathew, Lazar (School of Bio-Technology, Chemical and Bio-Medical Engineering, Vellore Institute of Technology (VIT) University) ;
  • Chung, Jong-Bae (Division of Life and Environmental Sciences, Daegu University) ;
  • Ahn, Ki-Sup (Department of Health and Environmental Science, Baekseok College of Cultural Studies) ;
  • Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
  • Published : 2007.09.30

Abstract

Gluconacetobacter diazotrophicus strain PA15 exhibited a minimum inhibitory concentration value of 11 mM in an LGI medium amended with $ZnCl_2$. When an LGI medium was amended with Zn metal, solubilization halos were observed in a plate assay, and further solubilization was confirmed in a broth assay. The maximum solubilization was recorded after 120 h with a 0.1% Zn metal amendment. During solubilization, the culture growth and pH of the broth were indirectly correlated. Using a Fourier Transform Infrared Spectroscopy analysis, one of the agents solubilizing the Zn metal was identified as gluconic acid. When the Zn-amended broth was observed under a bright field microscope, long involution cells were observed, and further analysis with Atomic Force Microscopy revealed highly deformed, pleomorphic, aggregate-like cells.

Keywords

References

  1. Alexander, E., D. Pham, and T. R. Steck. 1999. The viablebut- nonculturable condition is induced by copper in Agrobacterium tumefaciens and Rhizobium leguminosarum. Appl. Environ. Microbiol. 65: 3754-3756
  2. Altomare, C., W. A. Norvell, T. Bjorkman, and G. E. Harman. 1999. Solubilization of phosphates and micronutrients by the plant-growth promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl. Environ. Microbiol. 65: 2926-2933
  3. Aurelio, C., R. Musetti, and L. Nazia. 2004. Atomic force microscopy of unculturable bacteria, pp. 101-106. In A. Mendez-Vilas and L. Labajos-Broncano (eds.), Current Issues on Multidisciplinary Microscopy Research and Education. FORMATEX Microscopy book series (No.2), FORMATEX
  4. Baldani, J. I. and V. I. D. Baldani. 2005. History on the biological nitrogen fixation research in graminaceous plants: Special emphasis on the Brazilian experience. An. Acad. Bras. Cienc. 77: 549-579 https://doi.org/10.1590/S0001-37652005000300014
  5. Cavalcante, V. A. and J. Döbereiner. 1988. A new acidtolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108: 23-31 https://doi.org/10.1007/BF02370096
  6. Fasim, F., N. Ahmed, R. Parsons, and G. M. Gadd. 2002. Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol. Lett. 213: 1- 6 https://doi.org/10.1111/j.1574-6968.2002.tb11277.x
  7. Fomina, M., S. Hillier, J. M. Charnock, K. Melville, I. J. Alexander, and G. M. Gadd. 2005. Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica. Appl. Environ. Microbiol. 7: 371- 381
  8. Gillis, M., K. Kersters, B. Hoste, D. Janssens, R. M. Kroppenstedt, M. P. Stephan, K. R. S. Teixeira, J. Döbereiner, and J. De Ley. 1989. Acetobacter diazotrophicus sp. nov., a nitrogen fixing acetic acid bacterium associated with sugarcane. Int. J. Syst. Bacteriol. 39: 361-364 https://doi.org/10.1099/00207713-39-3-361
  9. Grey, B. and T. R. Steck. 2001. Concentrations of copper thought to be toxic to Escherichia coli can induce the viable but nonculturable condition. Appl. Environ. Microbiol. 67: 5325-5327 https://doi.org/10.1128/AEM.67.11.5325-5327.2001
  10. Ho, E. 2004. Zinc deficiency, DNA damage and cancer risk. J. Nutr. Biochem. 15: 572-578 https://doi.org/10.1016/j.jnutbio.2004.07.005
  11. Krasil'nikov, N. A. 1958. Soil Microorganisms and Higher Plants, p. 474. Academy of Sciences of USSR
  12. Leigh-Emma, B. 2000. Heavy metal resistance in the genus Gluconobacter. M.Sc. (Biology) Thesis, Faculty of Virginia Tech
  13. Lodewyckx, C., M. Mergeay, J. Vangronsvels, H. Clijsters, and D. van der Lelie. 2002. Isolation, characterization and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. calminaria. Int. J. Phytoremed. 4: 101-115 https://doi.org/10.1080/15226510208500076
  14. Luna, M. F., C. E. Bernardelli, M. L. Galar, and J. L. Boiardi 2006. Glucose metabolism in batch and continuous cultures of Gluconacetobacter diazotrophicus PAL 3. Curr. Microbiol. 52: 163-168 https://doi.org/10.1007/s00284-005-4563-0
  15. Madhaiyan, M., S. Poonguzhali, K. Hari, V. S. Saravanan, and T. M. Sa. 2006. Influence of pesticides on the growth rate and plant-growth promoting traits of Gluconacetobacter diazotrophicus. Pestic. Biochem. Physiol. 84: 143-154 https://doi.org/10.1016/j.pestbp.2005.06.004
  16. Mertens, J., D. Springael, I. De Troyer, K. Cheyns, P. Wattiau, and E. Smolders. 2006. Long-term exposure to elevated zinc concentrations induced structural changes and zinc tolerance of the nitrifying community in soil. Environ. Microbiol. 8: 2170-2178 https://doi.org/10.1111/j.1462-2920.2006.01100.x
  17. Moffett, B. F., F. A. Nicholson, N. C. Uwakwe, J. Brian, B. J. Chambers, J. A. Harris, and T. C. J. Hill. 2003. Zinc contamination decreases the bacterial diversity of agricultural soil. FEMS Microbiol. Ecol. 43: 3-19
  18. Muthukumarasamy, R., G. Revathi, and P. Loganathan. 2002. Effect of inorganic N on the population, in vitro colonization and morphology of Acetobacter diazotrophicus (Syn. Gluconacetobacter diazotrophicus). Plant Soil 243: 91-102 https://doi.org/10.1023/A:1019963928947
  19. Na, B. K., B. N. Sang, D. W. Park, and D. H. Park. 2005. Influence of electric potential on structure and function of biofilm in wastewater treatment reactor: Bacterial oxidation of organic carbons coupled to bacterial denitrification. J. Microbiol. Biotechnol. 15: 1221-1228
  20. Nies, D. H. 1999. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51: 730-750 https://doi.org/10.1007/s002530051457
  21. Poonguzhali, S., M. Madhaiyan, M. Thangaraju, J. H. Ryu, K. Y. Chung, and T. M. Sa. 2005. Effects of co-cultures, containing N fixer and P-solubilizer, on the growth and yield of pearl millet (Pennisetum glaucum (L) R. Br.) and Blackgram (Vigna mungo L.). J. Microbiol. Biotechnol. 15: 903-908
  22. Quan, Z. X., S. K. Rhee, J. W. Bae, J. H. Baek, Y. H. Park, and S. T. J. Lee. 2006. Bacterial community structure in activated sludge reactors treating free or metal-complexed cyanides. J. Microbiol. Biotechnol. 16: 232-239
  23. Rawlings, D. E. 2002. Heavy metal mining using microbes. Annu. Rev. Microbiol. 56: 65-91 https://doi.org/10.1146/annurev.micro.56.012302.161052
  24. Saravanan, V. S., M. Madhaiyan, and M. Thangaraju. 2007. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66 :1794-1798 https://doi.org/10.1016/j.chemosphere.2006.07.067
  25. Shin, W. S. J. H. Ryu, S. J. Choi, C. W. Kim, R. Gadagi, M. Madhaiyan, S. Seshadri, J. Chung, and T. M. Sa. 2005. Solubilization of hardly soluble phosphates and growth promotion of maize (Zea mays l.) by Penicillium oxalicum isolated from rhizosphere. J. Microbiol. Biotechnol. 15: 1273-1279
  26. Valle, B. L. and K. H. Falchuk. 1993. The biochemical basis of zinc physiology. Physiol. Rev. 73: 79-118 https://doi.org/10.2466/pr0.1993.73.1.79
  27. Wani, P. A., M. S. Khan, and A. Zaidi. 2007. Chromium reduction, plant growth-promoting potentials, and metal solubilization by Bacillus sp. isolated from alluvial soil. Curr. Microbiol. 54: 237-243 https://doi.org/10.1007/s00284-006-0451-5